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To pick, or not to pick... MAX G
I
& (OUNTRY LIVING

10 laws of picking wild flowers which, if broken, could land you a
£5,000 fine

From daffodils to bluebells, it can often be tempting to pick them, but Brits could face a
hefty fine or even imprisonment if they are picked from forbidden areas this spring, so it's
important to know the rules...

When it comes to picking flowers, the law falls under two categories:
o Wildlife and Countryside Act of 1981

e Theft Act of 1968
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Get to know the laws and the restrictions they impose



How do we ,,calculate a material“? ?EQ'ENXGASCALE

TRANSITION
.

NaCl (table salt)

Calculate the properties (e.g. lattice parameter,
> bulk modulus, phonons, electronic bands,
magnetic properties etc.) from first principles

.In physics and other sciences, theoretical work is said to be from first
principles, or ab-initio, if it starts directly at the level of established science and
WIKIPEDIA does not make assumptions such as empirical model and parameter fitting.”

The Free Encyclopedia




How do we ,,calculate a material*“? ?E'EV'E“SASCALE
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Bunch of nuclei and electrons:
Use Quantum Mechanics!
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Many-body problem M4 X i

May be solvable



Many-body problem M4 X i




L
2
=
22
G L —
=52
= W <C
T @
e
X € U € U €
W | | | ( |
U U € U €
| | L\ ( |

Many-body problem




Many-body problem: too complicated to solve! [JPEN{:coccce

TRANSITION

P. A. M. Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930)

Quasdum Mechanics of Many-Electron Systems.
By P. A. M. Dirac, St. John’s College, Cambridge.

(Communicated by R. H. Fowler, F.R.8.—Received March 12, 1929.)

§ 1. Introduction.

The general theory of quantum mechanics is now almost complete, the
imperfections that still remain being in connection with the exact fitting in
of the theory with relativity ideas. These give rise to difficulties only when
high-speed particles are involved, and are therefore of no importance in the con-
sideration of atomic and molecular structure and ordinary chemical reactions,
in which it is, indeed, usually sufficiently accurate if one neglects relativity
variation of mass with velocity and assumes only Coulomb forces between the
various electrons and atomic nuclei. The underlying physical laws necessary
for the mathematical theory of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty is only that the exact application
of these laws leads to equations much too complicated to be soluble. It there-
fore becomes desirable that approximate practical methods of applying quantum
mechanies should be developed, which can lead to an explanation of the main
features of complex atomic systems without too much computation.




Step 1: Born-Oppenheimer approximation M4 X i

TRANSITION

Adiabatic approximation: nuclei are heavy and move much slower than the electrons,
so the electronic cloud has sufficient time to relax to its ground state in any instantaneous
configuration of the nuclei.

Electronic Schrédinger Equation: HY = EU

k=1m=1

U = \I}(rlp ---7rN7R27 ceey R?\/'n)



How much storage do we need? MAX G

TRANSITION
I

Let's see how much disc space we need to store a wavefunction.

Take an atom, e.g. N with 7 electrons; store 10 values per coordinate
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How much is 2x106 t?

DL




Born-Oppenheimer M4 X i

HEY, W!IIAI DORYOUSSAYS
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Electronic Schrodinger Equation: HW = W ‘
IETRSIGOIBE INDEPENDENTRTOGETHERY

h(r;)
( A | assume independent electrons
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Independent electrons EE%L%?%CNALE

U(rioq,....,rNON) = mdet[%(1'101)¢1(r202)---¢N(I‘N0N)] Slater determinant

l N

= (U|H|V) = Zez >_(Wilh(ra)lws)

|

To calculate an observable we only need single particle orbitals!



Back to N-atom EELEV%?%CNALE

Let's see how much disc space we now need to store a wavefunction.

N with 7 electrons; store 10 values per coordinate

7 electrons — maximally 7 orbitals ¥1,...,¢7

Each orbital depends on 3 variables —— ¢, = ,(x,y, 2)

* 10 entries per coordinate —> 103 entries
* in total, for all orbitals — > T7x103 entries
7 kB of data
S

The coordinates of an electron are independent of the coordinates of all other electrons,
because the particles do not interact!

In reality, however, the electrons do interact, so...

WAKE|ME UPWHEN]I\CAREE



Mean-field theories fgggg%m

Maybe we could find a way to map the interacting Hamiltonian

H = Z<__V2 %wz—keRm) sz—m

=1 j=1

onto a non-interacting one, with an effective potential which includes the interaction?
N h2
H= Z heps(i) = <—%V + Veff(’i)>

=1
Mean field approximations:

 Hartree-Fock

» Density Functional Theory (DFT)



Hartree equations MAX G

e
D. R. Hartree, Proc. Camb. Phil. Soc. 24, 89, 111 (1928)

Dr Harlree, The wave mechanaes of ar etom, dc. 89

The Wave Meckanies of on Abww with ¢ Non-Couiaanb Uentral
Fiold, Part 1. Theory and Methods. By D R. HarTrEE, FPh.D.,
St Jobn's College.

[Recerved 10 November, read 21 Novemnber, 1927.)

Division of electrons into “core” and valence

The potential consists of the “external” potential due to the ions and an
approximation to the true electronic one: each electron sees the others as a
smooth distribution of negative charge with charge density P

1
Uel(I‘) = 62 E /dr’|¢j(r’)\2 . ! Ue:ct(r) — _262 Z |I‘- — R|
R 1



Hartree equations MAX G

e
D. R. Hartree, Proc. Camb. Phil. Soc. 24, 89, 111 (1928)

Dr Harlree, The wawe mechanies of ar atom, cdc. 89

The Wave Meckanies of o Abvme with ¢« Non-Counlemb Uentral
Fiold, Part 1. Theory and Methods. By D R. HarTrEE, FPh.D.,
St Jobn's College.

[Recerved 10 November, read 21 Novemnber, 1927.)

Hartree equations (one for each occupied one-electron level):

_h—v?w(r) + Ueat ()i (r) + Z / dr' | (r")]?

62

Vi (r) = e (r)

2m r; — /|

Solved self-consistently: for a trial electronic potential determine the one-electron
wavefunctions then use them to construct the new potential and iterate further.

Even though approximate, already quite complex and difficult to solve!



Hartree-Fock equations M4 X i

a,tﬁ :’
1
% |
V. Fock, Z. Physik 61, 126 (1930) ‘

Hartree equations can be derived from the trial function:

J. C. Slater, Phys. Rev. 35, 210 (1930)

U(ry81,r282,...,rnySN) = ¥1(r181)Ya(rass)...00 y (rn sy ), which is not

antisymmetric, as required by the Pauli principle. By using a Slater determinant
instead, one arrives to Hartree-Fock equations that also contain an exchange term:

hQ
- 29m

s Vi) Vo001 (0) + U)o
—Z/dr S ) ()3, = it




Hartree-Fock & Density Functional Theory (DFT) [N < ovccuie

TRANSITION

Wave-function based

U(rys1,re82,....,TNSN)

. U|H|P)
Optimize E = <—
(W[w)
Many complicated wave functions.

Can we try to extract information about physical systems with an integrated
quantity instead?



Hartree-Fock & Density Functional Theory (DFT) [J )¢ < ovccuie

TRANSITION

Wave-function based

W(ris1,r282,...,LNSN)

(W[H[P)

Optimize E =
(W]w)

Density based

Use n(r) = NZ...Z/drg.../drN\If*(rsl,rQSQ,...,rNsN)\I!(rsl,rQSQ,...,rNsN)
S1 SN

Minimize functional E[n(r)], provided that it exists and is (to some extent) known



The Essence of DFT fggggmﬁ

P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

Theorem 1: For a given external potential V, the ground-state properties of a system
are uniquely determined by the electron density alone, i.e. they are functionals of the
density.

Theorem 2: The exact ground-state density minimizes the energy functional E[n(r)]

The Nobel Prize in Chemistry 1998
' Walter Kohn, John Pople

The Nobel Prize in
Chemistry 1998

Walter Kohn John A. Pople

Prize share: 1/2 Prize share: 1/2

The Nobel Prize in Chemistry 1998 was divided equally between Walter
Kohn “for his development of the density-functional theory"and John A.
Pople "for his development of computational methods in quantum
chemistry".



Kohn-Sham Equations M4 X i

W. Kohn, L. J. Sham, Phys. Rev. 140, A1133 (1965)

How do we now use DFT to calculate materials’ properties?

Start from a non-interacting electron gas in a potential vs - one-electron
Schrodinger equation:

\VE
(—7 + 'l’s) Pi = €iP;

For N electron states, construct the one-particle electron density from the lowest-
lying one-particle states:

For small variations around the ground-state density E is stationary:
0 =0Eop = Eop[nop(r) + 0nop(r)] — Eop[nep(r)]

0 = 0T5p[n0p) + /572.(1')1:3(1') dr yields the exact ground state density
~ corresponding to v,



Kohn-Sham Equations M4 X i

Now to an interacting system: T T o ey “Sae
FWE FINGERS, AND THKTS ASOUT
THE VALUE OF P\

Now assume that we can find an effective potential vs so that 7,
where n(r) is the ground state density of an interacting system.

n(r)] = op[n o) + / )z (r) d

Eln(
n ( 1‘ ) dl d 1 @ Physics professors shouldn’t teach geometry.
kinetic energy of the | r—r’ ' Approximate!

non-interacting system / \ T

Exchange and correlation;
contains the exchange
interactions and the corrections
to the kinetic energy

. ‘ J 5E1.C [n(l‘)]
©) — n ron(r) |v...(r 2 () T’
® From 0 = 61,,[n] + / dr on(r) [L”t(l) T /e 'r—1'| e on(r)

e [ n) o, SEen()
cat(r) + / r—r’ |d on(r)

V2
> (—7 + vs) w; = €;; Equations solved self-consistently: guess Vs> i > n

Hartree term

> vs(r)




Local Density Approximation (LDA) M4 X i

TRANSITION

W. Kohn, L. J. Sham, Phys. Rev. 140, A1133 (1965)

Kohn-Sham equations transfer the problem of finding the correct density to
finding the correct exchange-correlation potential.

The simplest approximation is LDA, which exploits the nearsightedness of
the electronic matter:

EEPA[n(r)] = / o (1 (2 (r) dr

h : :
where €ge (1) is exchange and correlation energy per particle of a
homogeneous electron gas (HEG).

Kohn & Sham: “We do not expect an accurate description of chemical binding”



“Jacob’s ladder” of approximations

(according to J. P. Perdew)
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Improve LSD by incorporating exact constraints successively

unoccupied {\; }
€x

t / Vn

/Vn

Most frequently used —
n

Exact exchange

meta-GGA

GGA (Generalized Gradient Approximation)

LSD (Local Spin-Density Approximation)

“And he dreamed, and behold a ladder set up on the earth, and the top of it reached to heaven: and behold the
angels of God ascending and descending on it.” Genesis 28:12 (King James Version).

More on Thursday: lecture by Matthias Redies!



Kohn-Sham: cautionary notes MAX G

Kohn-Sham orbitals have, strictly speaking, no physical meaning, except that
n(@ =YX, |e;(#)|? is the exact density of the interacting system. In particular,

det(p;(r)) is not to be taken as an approximation to the many-body wave-
function of the system.

Likewise, the orbital energies €; have in general no physical meaning,



Self consistency cycle and structure optimisation| WP}« ccsc.-

TRANSITION

Initial guess:
charge density  atomic positions
ny(r) {R},
<
<

Calculate the potential

!

e N
Forceach k-point; set up H
and solve theeigenvalue problem
\ y,
4 l N
Calculate Fermi energy
\. v

{

\

Calculate output density n’,(r)

{R};

not converged

-

\

Mix the old and the
new density, n, ,(r) and
n’(r), to obtain the
new input density n,(r)

not converged

converged

Calculate forces and
new atomic positions

{R};

converged
—>



How to tell the computer what to do? M A X it

TRANSITION
.

V2
(—7 + Us) Pi = €iP;




How to tell the computer what to do? M4 X i

TRANSITION
.

Turn Kohn-Sham equations into matrix equations!

Two options:
Discrete real space grid

Expansion in a basis set



Discrete grids: 1D illustration
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f(x1)
f(x1)
9
F& 21 p ey
/—_\ :
Xn
\ e N ) e
\ / Derivatives - finite differences:
\//
Simplest formula for the second derivative is:
2f| _ xgen)-2f () +F (1)
. dx?ly; B h2
X1, X2 X3 X4 X5 Xg Xg Boundary conditions!

A 1D Kohn-Sham equation takes the form:

1 1 1
~oz Ut gE o
1 1 1
“amz Dt o
1 1 1
2z )t oz
- 2h2 vs(xn) + 2h2

/ ey \

@ (x1)

@i (x2)

i \wk(;m)/

\‘Pk (;n+1)/




Discrete grids: 1D illustration M4 X i
.

Boundary conditions:

* For finite systems K-S orbitals are zero on the boundary

* For periodic systems: @ (x0)= @k (xn), Pi(X1)= @i (Xn+1)

Integrals are calculated as finite sums:
X
X1

Cdrfm=h Yy f)
=1

Of course, one introduces an error by discretizing the functions, which depends on
the spacing of the grid points.



Expansion into basis functions

Choose some functions ng(F) and expand the wavefunction:
Np
o(r) = E Cu¢u(r)
W
- The differential equation turns into a linear algebra equation

E H,ul/CiI/ — € E S/,Ll/cil/
% %

In short:

HC,' — E;SC,'
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Two matrices fggggﬁ%g

« Hamiltonian contains the matrix elements of the kinetic energy and of the
potential:

1
Hyu= [ dros@ (<572 + % () 6,0
— Tvp + Vi

* The Overlap matrix:

Sow= | d’rg;(F)gu(F)

4

» OQOverlap is diagonal for orthogonal basis functions



The choice of the basis functions ?EQ'ENXGASCALE
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The choice of the basis depends on two criteria:

1) Boundary conditions

* For finite systems ¢; () —— 0

« For periodic systems: plane waves

2) Generality vs. suitability to the specific problem

 The closer the basis functions are to the actual K-S orbitals, the fewer
basis functions one needs:

If we manage to guess a basis function that equals the wavefunction, a single
expansion coefficient would be enough

o (r) = Z cipi—1(r)

* One cannot, however, chose a different basis set for each problem!



= DRIVING
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Construct basis functions that are centered at the atoms

« Gaussian basis functions Atomic position

1 . B
6(7) = e R

(usually linear combinations of such Gaussians are used).
« Slater type

These functions decay exponentially for large distance and have the correct
behavior close to the nuclei

1
o(r) = 5 l(r = R)" e R
(n is an integer -> principle quantum number)

These functions also need an angular part 2> usually spherical harmonics



Examples: Plane waves (for periodic systems) |[WPEN{cooccuie

TRANSITION

1 ..
0g(r) = e

Advantages:

Orthonormal basis set

Single convergence parameter: number of plane waves
Plane waves are momentum eigenfunctions - the Kinetic
energy is diagonal

|
Tzg = §\g!25(g—g’)

Plane waves easily fulfill the Bloch ansatz for periodic
systems by taking

—

E=k+G



Examples: Plane waves (for periodic systems) |[WPEN{cooccuie

TRANSITION

]_ . ——
#(7) = —e'8"
¢g( ) N
Advantages:

« Potential matrix elements are given by the Fourier transform of
the potential

1 o
Ver = 1o Vd3rV(r)e’(g —&)r

= Vrr(G' - G)



The non-trivial part of the story... MAX G

Two problems:

* The ionic potentials have an integrable pole at the position of the ions

- Gaussian and Slater type orbitals we can solve the integral analytically, but for
grids and plane waves we have a problem (infinitely many grid points / plane-waves
needed to describe the pole)

» Core electrons are usually localized near the ion

- Localized functions need finer grids / many plane waves, while at the same time
core electrons are not essential for binding and general electronic behavior.

4p3/2= N\ y 4§pl/2 Semi-core states

172

-250 3d, . B
32

Core states

Potential/Eigenvalues (eV)
(OS]
o

-500 -




The non-trivial part of the story... MAX G

Two possibilities:
 Pseudopotentials
- Modify the potential to make it easier to treat

* Augmented plane waves
—> Treat core and valence electrons differently = Gregor Michalicek’s lecture

4p3/2= N\ y 4jpl/2 Semi-core states
— 12
>
L
w2
(D]
=
<
% -250 3d, . i
5 3d,,
=
g Core states
(]
E 3P, |
'3p 12
-500
, 381,




Idea behind a pseudo-potential M4 X i

Replace AE wavefunction by pseudo-
wavefunction
- smooth nodeless wavefunction
- same as AE outside some radius

—> inside the core radius the
nodeless wavefunction is meaningless

Remove the 1/r singularity

- “remove” core states
- remove numerical difficulties
Create a smooth potential




Idea behind the augmented plane waves M4 X i

TRANSITION
I

Partition space:

« MT spheres
Potential is spherically symmetric

—> use the solutions of the radial part of the Schrodinger
equation

 Interstitial
Potential is small
—>use plane waves

Stay tuned for more: lecture by Gregor Michalicek!



DRIVING
Take-home messages MAX G

 Many-body problems: difficult to solve, large memory needed for storing the
wave function; approximations are needed

 Mean-field approaches: Hartree-Fock & DFT

 DFT: given an external potential, the ground-state density uniquely determines the
ground-state properties and minimizes the energy functional.

« Kohn-Sham equations map a system of interacting particles onto a system of
non-interacting particles with the same density.

« Approximations to the exchange-correlation functional are necessary
 One seeks a self-consistent solution to the K-S equations
« Various computational methods exist, the right choice depending on several factors,

such as e.g. the type of the system to be treated and whether one is interested in the core
electrons or not
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Thank you for your attention!




