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» The formalism of Wannier functions constitutes a and
electronic-structure method in order to study the bulk properties of
crystalline materials.

» Combining the automatic construction of these objects with public density
functional theory (DFT) programs made systematic studies of
solid-state effects in complex materials possible for a large
community of researchers.

4000

Total occurences of “Wannier” 3000
in Web of Science

2000

1000

0 l) JULICH

Forschungszentrum

(3) 1980 1990 2000 2010



= - DRIVING
MOtlvatlon e«b %E\ ,\IES><|$%CNALE

mean-field theory

ferroelectric polarization

molecular dynamics

anomalous Hall effect

minimal models

Dzyaloshinskii-Moriya interaction

chemical bonding

electron-phonon coupling

disordered systems

spin-orbit torques

hybridization

chemist,-y spin Hall effect

... and many more
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Bloch Functions 101

TRANSITION

» We are interested in the bulk properties of crystalline materials within the
approximation of non-interacting electrons. Thus, the electronic
Hamiltonian assumes the form

H—N[ 2 —|—U(rz-)] with  U(r, + Ry) = U(ry)

» This is a sum of single-particle Hamiltonians. The solutions for each can be
obtained by solving the single-particle Schrédinger equation:

[_ " o2 U(fr)] Vi) = eshi(r)
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Bloch Functions 101

TRANSITION

» Exploiting the translational invariance of the considered solid, we use periodic
boundary conditions to solve the differential equation. This leads to the
fundamental Bloch theorem:

wkzn('r + Rm) — eik'mekn(r)

» Here, the crystal momentum k can take only discrete values in the first
Brillouin zone. An equivalent formulation of the Bloch theorem is:

Vg (1) = eik""ukn('r)

IJ JULICH

Forschungszentrum



Bloch Functions 101

TRANSITION

» The lattice-periodic parts u,,, are periodic in real space with respect to the unit
cell of the crystal. Therefore, we can set up the Fourier series

ukn(r) = Z GiG'er+Gn
G

where G is a reciprocal lattice vector (i.e., k and k+G are equivalent):

» We can exploit this relation to prove the periodicity of the Bloch states in
momentum space: o~
P \Ijk+G’n(r> _ 6zG Orezk.ruk—kG’n(r)

= ® g (1)
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Bloch Functions 101

TRANSITION

eik:-r

/

k=0

\wkn(r)
k =k
k = ko

unit cell

‘ (X
0 J JULIcH




Introduction to Wannier Functions

TRANSITION

» While Bloch functions are the eigenstates of the Hamiltonian for a given band

and a given crystal momentum, they are and in real
space.
» Often, orbitals that are in real space offer more microscopic insights

into the underlying chemical and physical processes.




Introduction to WFs

TRANSITION

As the Bloch states are periodic in momentum space, we may express them
in terms of a Fourier series:

Vkn(r) = Z e EWrn(r)

R

The inverse of this series leads to so-called Wannier functions (WFs) that are
Fourier transformations of the original Bloch states:

Wan(r) = ~ 3 e * Ry (r)

N
k Wannier, Phys. Rev. 52, 191 (1937)

We will show later that these objects can become strongly localized in real
space - in contrast to the Bloch functions. Thus, they provide a
complementary perspective for many effects in solids.

The WFs are not eigenstates of the single-particle Hamiltonian, but they are

still very useful... .
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Introduction to WFs

TRANSITION

» Similarly to the well-known Bloch functions, the set of the WFs forms an
orthogonal and complete basis.

Bloch states:

/ B () () AT = Ot G S G (P en () = 6 — 1)

supercell

Wannier functions:
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Introduction to WFs

TRANSITION

» We may associate to a given Wannier orbital a center in real space:

(Wonlr[Won) = / W (r) 7 Won (r) dr
supercell

—> cf. electric polarization

» What is the role of the real-space vector R for the WFs?

Wrn(r) = N Z e Fapp (1)
k
1 —ik-Rik-r
= — ) e e M ug,(r)
N ¥
= % Z Vkn(r — R)
k
— W()n(’l" R)
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Introduction to WFs

TRANSITION

Property of Fourier transform
smooth f(k) 2 localized f(r)
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» Consider as an example a Wannier orbital that can be obtained from the
Bloch states in a periodic one-dimensional potential. What happens if we

introduce a different in front of the Bloch states (leads to the same
observable electron density)?

gauge A

— W(x) — Potential

Potential V(x)

-6 4 -2 0 2 4 6

(14) , _ Position X
from: Freimuth, PhD thesis, FZJ



Localization of WFs

TRANSITION

» As we saw in the previous simple example, choosing a different phase for the
Bloch states (i.e., exploiting their ) will lead to new Wannier
orbitals that may exhibit very different shapes in real space. Engineering the
degree of localization of WFs is a highly non-trivial question, and a lot of
research has been devoted to its answer.

» s it possible to choose a unique gauge such that the set of WFs becomes as
localized as possible in real space?

isolated band Vign — eis"("’)zbkn ST~ 7 T €kn

€km

composite bands Yk, — Z U ) e T~ €kn



Maximal Localization of WFs

TRANSITION

PHYSICAL REVIEW B VOLUME 56, NUMBER 20 15 NOVEMBER 1997-11

Maximally localized generalized Wannier functions for composite energy bands

Nicola Marzari and David Vanderbilt
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849

(Received 10 July 1997)

We discuss a method for determining the optimally localized set of generalized Wannier functions associ-
ated with a set of Bloch bands in a crystalline solid. By ‘‘generalized Wannier functions’” we mean a set of
localized orthonormal orbitals spanning the same space as the specified set of Bloch bands. Although we
minimize a functional that represents the total spread =,(r2),— (r)?> of the Wannier functions in real space, our
method proceeds directly from the Bloch functions as represented on a mesh of k points, and carries out the
minimization in a space of unitary matrices U describing the rotation among the Bloch bands at each & point.
The method is thus suitable for use in connection with conventional electronic-structure codes. The procedure
also returns the total electric polarization as well as the location of each Wannier center. Sample results for Si,

GaAs, molecular C,H,, and LiCl will be presented. [S0163-1829(97)02944-5]
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Maximal Localization of WFs

>

TRANSITION

A starting point for the procedure of maximal localization are the definitions
of the center and the second moment of the WF at the origin with R=0:

T = (Won|r|[Won) <7“2>n = <W0n|r2|WOn>

where both quantities can be evaluated from the Bloch orbitals and a fixed
choice of the gauge. The real-space spread of all the Wannier orbitals is given

by
QU™ =" () —72)

n

This quantity is a functional of the gauge matrices UK, which allows us to
minimize the spread by variation of these unitary matrices. To systematically
perform this minimization, for example, a steepest-descent algorithm can be
used if dQ/dU® is known.
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Maximal Localization of WFs

TRANSITION

» Based on a DFT calculation of the Kohn-Sham orbitals, this automatic
procedure can be carried out in a post-processing step in order to obtain
maximally localized WFs (MLWFs).

» Many modern DFT codes feature
initial guess for gauge interfaces to the puinCIy available
program package “wannier90”.

An updated version of wannier90: A tool for obtaining
maximally-localised Wannier functions

compute spread and
gradient 99 /U k)

Arash A. Mostofi®*, Jonathan R. Yates®, Giovanni Pizzi, Young-Su Lee€, Ivo Souza¢,
David Vanderbilte, Nicola Marzarif

» Although the procedure itself is
automatized, it requires a lot of user
experience to generate a physical set

of MLWFs.
IJ JULICH
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... and in Practice?

initial guess for gauge

compute spread and
gradient 99 /U k)

C )

determine new gauge

DRIVING
MAX THE EXASCALE
TRANSITION

Trial orbitals such as
S, p,... or hybrids

¥

|W0n> — %Z ’\Pkm><mkm’gn>
km
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Requires projections
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... and in Practice?

(WRn|r|Wom) =1

initial guess for gauge

compute spread and
gradient 99 /U k)

C )

determine new gauge

.V ik
OE /d3ke BB gen | Vi [tk )
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Evaluate via finite differences:

k —

b k kE+b

Wy Wy

1
(Wonlr[Won) = —+- > " wybImIn MY

-

o

~

Requires overlaps

M) = (g |t -m)
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The Wannier Workflow G

http://www.wannier.org

Wannierization using
wannier90 code

Self-consistent calculation
of charge density in
FLEUR

- WF1.wout, .chk

Prepare Wannier step

Post-processing
(FLEUR/wannier90)

- WF1.win

Generate necessary R FTRISIET .
. anke2@jr workflow]$ cat wann_inp
matrices for MLWFs byindex 1 &
Iprojgen
prepwan9e
R matrixmmn
- WF1.amn, .mmn, .eig atrixamn
ek

Freimuth et al. PRB 78, 035120 (2008)



Shape of WFs

Reflect the covalent nature of chemical bonds!

Semiconductors
(direct band gap)

Metals
(here: bcc Fe)
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Bonding / Anti-Bonding Orbitals

Rev. Mod. Phys 84, 1419 (2012)

10 F

S

Energy (eV)

-10




Model Hamiltonians

TRANSITION

» Tight-binding model: The electrons are considered to be tightly bound to
nuclei such that the hopping processes to different lattice sites can be viewed
as small perturbations that give rise to hybridization and dispersive energy
bands. This typically provides a better and more natural description of the
electronic structure of solids than the picture of free electrons.

H = Zeicgci -+ ZtijCICj + ...
7 1]

/

on-site hopping
energies parameters




Model Hamiltonians

TRANSITION

» The (unique) set of localized WFs constitutes an orthogonal, complete basis,
which enables us to use these orbitals as a starting point for setting up
effective model Hamiltonians in real space.

H = Z Z tpns (R7 R/>|WRTL> <WR’n’|

RR' nn’

Here, the hopping parameters can be easily
shown to depend only on the distance
vector connecting the WFs

tnn/ (R7 R/) — <WRn‘H‘WR’n’>
— <W0n|H|WR’—Rn’>
= thn (R — R)




Model Hamiltonians

TRANSITION

» Using a Fourier transformation of the real-space Hamiltonian in the basis of
MLWFs, we can get back to momentum space and extract properties such
as the band structure. For this purpose, we need to diagonalize

iq- energies
Hnn’ (C_I) — Z e R tnn/ (R)
R [ gauge
| 1 | ;
_ iqR ) 1 —ik-R [7(k) (k)
_zR:eq {Nzk:e [U e(k)U Ln}

» A fundamental question arises: Did we gain anything in this construction or
did we simply run in circles (from Bloch orbitals over Wannier functions back
to Bloch orbitals)?
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Wannier Interpolation

TRANSITION

» The previous procedure is particularly useful: we established an extremely
important and widely applied computational technique that is known as
Wannier interpolation.

H (k) H(R) H(q)

DFT on coarse mesh maximally localized much finer sampling
(e.g., 8% k-points) Wannier functions (e.g., 200° q-points)
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How does it work?

» Before we discuss first examples of the Wannier interpolation, let us briefly
elucidate how the of the hopping integrals between

localized WFs can provide an efficient but accurate interpolation method for
properties in momentum space.

» To address this question, we need to consider the WFs for continuous and
discrete values of k. Consider a 1D example of plane waves:

_ 1 " ikx 1 tkx
Wix) = oy /_We dk Wix) = N kGZBZe
_ sin(mx) 11— Prin
‘ T N 1 — e2miz/N
= jo(mx)
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How does it work?

TRANSITION

» We can extract information for any desired k via the interpolation since the
“true” Wannier orbitals are very well approximated by the MLWFs obtained on
a relatively coarse momentum mesh.

» In the discrete case, appear, which should not interact
appreciably to achieve high accuracy of the interpolation. This is known as
in digital signal processing.

:% Z eikaz

kEBZ
1 1— 627m'a:
~ N1 _ e2wiz/N
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Interpolation in Real Materials
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from: Wang et al, Phys. Rev. B 74, 195118 (2006)

bcc iron

Inner window



Interpolation in Real Materials

TRANSITION

Can you see the bands? bec iron
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Interpolation in Real Materials

Now you can!
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bcc iron

DFT

Wannier

interpolation

1

Spin up Spin down

from: Yates et al, Phys. Rev. B 75, 195121 (2007)
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TRANSITION

Exchange Interactions

Anomalous Hall Effect Spin-Orbit Torques

Topological Properties
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Sampling Momentum Space

The Berry curvature in metallic magnets is sharply peaked if two energy
bands cross (degeneracy or monopole) or if two levels repel each other
(avoided crossing). Consequently, calculating accurately the integral of the
curvature over the Brillouin zone — to determine the conductivity — requires an
ultra-dense sampling of momentum space.
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