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GEOMETRY OPTIMIZATIONS
Finding the Minimal Total Energy
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Fig. 1: Typical flow of a DFT calculation.

The effective potential in this equation describes the interaction of the electrons and is an po-
tential depending explicitly on the density. Thus, the Hamiltonian Ĥ[n] and the wavefunctions
 ⌫([n], r) are also dependent on the electron density n(r). Together with the expression Eq. (1)
a self-consistency problem to obtain the charge density n(r) is established, which is solved it-
eratively until the input density (used to define the potential terms in the Hamiltonian) is equal
to the output density within the required accuracy.
The external potential V̂ext[{R}] depends explicitly on the positions {R} of all atoms, which
change at certain steps to optimize the atomic structure or every time-step of a molecular dy-
namics algorithm. Thus, the Hamiltonian Ĥ[{R}] and the wavefunctions  ⌫({R}, r) are also
dependent on the atomic positions {R}. After the self-consistency condition for the electron
density has been fulfilled, the atom positions are moved by a molecular static or molecular dy-
namics time-step, {R(t)} ! {R(t+�t)}. Thus, for NMD molecular time steps the eigenvalue
problem has to be solved NMDNiter times. These arguments suggest a particular loop structure
of a typical first-principles method and a particular sequence how the different elements are
calculated. This is summarized in Fig. 1.

The Effective Single Particle Potential

Of crucial importance and key to the success of DFT is the effective potential describing the
interaction of the many-electron system. It is constructed as a sum of two ingredients, (i) the
Hartree potential describing the classical electrostatic interaction of a single electron with the

D. Wortmann, DFT in practice, 45th IFF Spring School (2014).

⇒ Minimal total energy: Stable geometry found!

Note:

Energy landscape might contain several minima / stable geometries

Calculation of forces combinable with optimization algorithms
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namics algorithm. Thus, the Hamiltonian Ĥ[{R}] and the wavefunctions  ⌫({R}, r) are also
dependent on the atomic positions {R}. After the self-consistency condition for the electron
density has been fulfilled, the atom positions are moved by a molecular static or molecular dy-
namics time-step, {R(t)} ! {R(t+�t)}. Thus, for NMD molecular time steps the eigenvalue
problem has to be solved NMDNiter times. These arguments suggest a particular loop structure
of a typical first-principles method and a particular sequence how the different elements are
calculated. This is summarized in Fig. 1.

The Effective Single Particle Potential

Of crucial importance and key to the success of DFT is the effective potential describing the
interaction of the many-electron system. It is constructed as a sum of two ingredients, (i) the
Hartree potential describing the classical electrostatic interaction of a single electron with the

D. Wortmann, DFT in practice, 45th IFF Spring School (2014).

⇒ Minimal total energy: Stable geometry found!

Note:

Energy landscape might contain several minima / stable geometries

Calculation of forces combinable with optimization algorithms

Slide 1 29



DFT FORCE CALCULATION
Theory (Hellmann–Feynman Force)

Force from negative gradient of Kohn–Sham total energy 𝑭𝛼 = −d𝐸KS
tot

d𝝉𝛼

The Hellmann–Feynman (HF) contribution incorporates 2 resulting terms

Applying Weinert method delivers HF force as implemented in FLEUR

𝐸KS
tot [𝜌(𝒓)] = ∑

𝑛
𝑓𝑛𝜖KS𝑛 − ∫ d3𝑟 𝜌0(𝒓)𝑉eff(𝒓) + 1

2
∬ d3𝑟′ d3𝑟 𝜌0(𝒓)𝜌0(𝒓′)

|𝒓 − 𝒓′|

+1
2

𝑁at

∑
𝛼≠𝛽

𝑍𝛼𝑍𝛽

∣𝝉𝛼 − 𝝉𝛽∣
−

𝑁at

∑
𝛼

∫ d3𝑟′ 𝑍𝛼𝜌0(𝒓′)
∣𝝉𝛼 − 𝒓′∣

+ ∫ d3𝑟′ 𝜌0(𝒓′)𝜖𝑥𝑐[𝜌0(𝒓′)]

𝑭HF
𝛼 = [−∇𝝉𝛼

𝐸KS
tot ]

HF
= − ∑

𝛽≠𝛼

∂
∂𝝉𝛼

𝑍𝛼𝑍𝛽

∣𝝉𝛼 − 𝝉𝛽∣
+ ∫ d3𝑟′ ∂

∂𝝉𝛼

𝑍𝛼𝜌(𝒓′)
∣𝝉𝛼 − 𝒓′∣

𝑭HF
𝛼,Yu = 𝑍𝛼

1
∑

𝑚=−1

(−1)𝑚
√

12π
𝑇 ̂𝒆𝑚

⎛⎜
⎝

4π
3

∫
𝑅𝛼

0
d𝑠𝛼 𝜌𝛼

1𝑚(𝑠𝛼)[1 − ( 𝑠𝛼
𝑅𝛼

)
3

] +
𝑉 𝛼
C,1𝑚(𝑅𝛼)

𝑅𝛼
⎞⎟
⎠

Hellmann, Einführung in die Quantenchemie, Deuticke, 1937. | Feynman, Phys. Rev., 1939, 56, 340-343. | Yu et al., Phys. Rev. B. 1991, 43, 6411-6422.
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THE WEINERT METHOD
Example: Coulomb potential

Goal: Solve Poisson equation

∆𝑉Coul(𝒓) ∝ 𝜌(𝒓)

Multipole moments not unique

𝑞𝛼
𝑙𝑚 = ∫

MT𝛼

d3𝑟 Y∗
𝑙𝑚( 𝒓 − 𝝉𝛼

∣𝒓 − 𝝉𝛼∣
)∣𝒓𝑙 − 𝝉𝛼∣𝑙𝜌(𝒓)

Fourier transform appliable to smooth

pseudo-charge density

⇒ 𝑉 𝛼
IR, Coul(𝒓) = ∑

𝑮≠𝟎

4π
𝐺2 𝜌ps(𝑮)ei𝑮⋅𝒓

𝑅MT𝛼
𝑅MT𝛽

𝜏𝛼 𝜏𝛽

Muffin-tin potential from boundary-value problem

𝑉 𝛼
MT, Coul(𝒓𝛼 + 𝝉𝛼) = ∫

MT

d3𝑟′
𝛼 𝜌(𝒓′

𝛼)𝐺(𝒓𝛼, 𝒓′
𝛼) − 1

4π
∮

∂MT

d𝑆 𝑉 𝛼
IR, Coul(𝒓′

𝛼 + 𝝉𝛼)∇𝑟′
𝛼
𝐺(𝒓𝛼, 𝒓′

𝜶)

M. Weinert, J. Math. Phys, 22, 2433 (1981).
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DFT FORCE CALCULATION
Theory: (Pulay Force)

FLEUR uses the LAPW basis set dependent on 𝒓 (see previous talk)

⇒ Gradient also acts on basis-functions!

𝑭 Pulay
𝛼 = ∑

𝑛
𝑓𝑛

∂𝜖KS𝑛
∂𝝉

− ∫ d3𝑟 𝜌0(𝒓)∂𝑉eff(𝒓)
∂𝝉

= ∑
𝑛𝒌

𝑓𝑛𝒌⟨∂𝛹𝑛𝒌
∂𝝉𝛼

∣ℋ − 𝜖𝑛𝒌∣𝛹𝑛𝒌⟩ + c.c.

Background knowledge:

Pulay terms compensate Kohn–Sham solutions to be variational

Pulay terms involve LAPW-valence state and non-LAPW core states (later)

General (LAPW-independent) formulation up to now!

Pulay, Mol. Phys., 1969, 17, 197-204

Yu, R., Singh, D. & Krakauer, H., Phys. Rev. B, 1991, 43, 6411-6422
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BASIS SET CORRECTION
Beyond plane-wave codes

LAPW basis → Basis correction term required

Vanishes for interstitial region / plane-wave codes

BUT: Basis correction term cannot fully be described by LAPW Hilbert space!

Frozen-augmentation approximation: 𝑢𝛼
𝑙𝜆(𝜏) ≈ 𝑢𝛼

𝑙𝜆

∂𝛹𝑛𝒌(𝒓)
∂𝝉

= ∑
𝐺

∂𝑧𝐺(𝑛𝒌)
∂𝝉𝛼

𝜙𝒌𝑮(𝒓) + 𝑧𝑮(𝑛𝒌)∂𝜙𝒌𝑮(𝒓)
∂𝝉

; 𝜙MT(𝛼)
𝒌𝑮 (𝒓) = ∑

𝑙𝑚𝜆
𝑎𝛼𝒌𝑮

𝑙𝑚𝜆 𝑢𝛼
𝑙𝜆Y𝑙𝑚( ̂𝒓𝛼)

∂𝜙𝒌𝑮(𝒓)
∂𝝉

= {
[i(𝒌 + 𝑮) − ∇]𝜙𝒌𝑮(𝒓) , 𝒓 ∈ MT(𝛼)
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THE INP.XML FILE
Relevant Extract for Relaxation Algorithm

<calculationSetup>

<geometryOptimization l_f="F" forcealpha="1.0" forcemix="BFGS"

epsdisp=".00001" epsforce=".00001"/>

</calculationSetup>

<atomGroups>

<atomGroup species="foo">

<force calculate="T" relaxXYZ="TTT"/>

</atomGroup>

<!-- more atom groups here depending on geometry setup-->

</atomGroups>

<xi:include xmlns:xi="http://www.w3.org/2001/XInclude"

href="relax.xml"> <xi:fallback/> </xi:include>
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SURFACE TERMS
Compensating discontinuities

DFT in practice D4.21

InterstitialMuffin-tins

Positions of nuclei

Fig. 7: Left: Unit cell partitioned into (muffin-tin) spheres around atomic positions (two dif-
ferent atom kinds are assumed here with different radii) and the remaining interstitial volume.
Right: Actual all-electron potential.

the Korringa, Kohn and Rostocker (KKR) method and the APW method, and the linear methods,
of which the most commonly used are the linear muffin-tin orbital method (LMTO) [16], the
augmented spherical [17] and the APW-based schemes, e.g. FLAPW method.
In this section, I introduce step-by-step the full-potential linearized augmented plane-wave
(FLAPW) method [18, 19], to solve the density-functional equations for a crystalline solid.
The method originates from the APW method proposed by Slater [20, 21, 22]. Great progress
of the APW methodology was achieved as the concept of linear methods [23, 16, 24, 25, 26],
was introduced by Andersen and first applied by Koelling and Arbman using a model poten-
tial within the muffin-tin approximation. The linearized APW (LAPW) method reconciled the
linear-algebra formulation of the variational problem with the convergence properties of the
original formulation and allowed a straight forward extension of the method to the treatment of
crystal potentials of general shape. The treatment of the potential and charge density without
shape approximation [27, 28] and the implementation of the total energy [19] let to the develop-
ment of FLAPW bulk [18, 28, 29, 30, 31, 32, 33, 34] film codes [18, 34, 35, 36]. It was during
this time that the power and accuracy of the method were demonstrated to the community,
largely through a series of calculations of surface and adsorbate electronic structures (for a re-
view see Wimmer et al. [37]). These and other demonstrations established the FLAPW method
as the method of choice for accurate electronic structure calculations for a broad spectrum of
applications.
Constant conceptual and technical developments and refinements such as the proposal and im-
plementation of the scalar-relativistic approximation (SRA) [38], the spin-orbit interaction by
second variation [42], and the possibility to calculate forces [43, 44] acting on the ions to carry
out structure optimizations, the proposal of a new efficient basis sets, the LAPW+LO [45]
and APW+lo [46] basis, in which the APW basis is amended by local orbitals (lo) has made
APW-like methods, and for our discussion the FLAPW method, a robust, versatile and flexible
method, at reasonable computational expense.

The APW Concept

In the APW method the space is partitioned into spheres centered at each atom site, the so-called
muffin-tins (MTs), and into the remaining interstitial region (cf. Fig. 7). The MT spheres do not

D. Wortmann, DFT in practice, 45th IFF Spring School (2014).

LAPW basis features discontinuity

between interstitial and muffin-tin

⇒ Correction term to …

…fix discontinuity of integration

…correct discontinuous potential,

density and xc-energy density terms

⇒ Alternative: Reduce discontinuity

𝑭 surf
𝛼 = ∮

∂MT(𝛼)
d𝑆 ̂𝒆[𝝆MT(𝜖MT

xc + 𝑉 MT
eff + 𝜇MT

xc )] − [𝝆IR(𝜖IRxc + 𝑉 IR
eff + 𝜇IR

xc)]

+ ∑
𝑛𝒌

𝑓𝑛𝒌 ∮
∂MT(𝛼)

[𝛹MT
𝑛𝒌

∗(𝒯 − 𝜖𝑛𝒌)𝛹MT
𝑛𝒌 − 𝛹 IR

𝑛𝒌
∗(𝒯 − 𝜖𝑛𝒌)𝛹 IR

𝑛𝒌]

Klüppelberg et al., Phys. Rev. B, 2015, 91, 035105
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DFT FORCE CALCULATION
Pulay Core Force

𝑭 Pu.,core
𝛼 = − ∫

𝛺
𝑉eff(𝒓)∇𝜌𝛼

core(𝒓) d3𝑟

Dependence on 𝝉𝛼 from local coordinate frame

In practise, core states are not perfectly confined to muffin-tins.

Core-tail interstitial solution with help from a gaussian pseudo-density which is

smoother than the original spherical core density

Area integrated over is whole unit cell → Increase of user friendness, as result not

dependent on mufin-tin radii
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DRIFT FORCE
Violation of the acoustic sum rule

Acoustic sum rule: 𝑭D = ∑𝛼 𝑭𝛼 = 𝟎
The sum of the forces on all atoms adds up to zero.

:

materialscloud.org

Usually non-vanishing drift force 𝑭D in practise

Contradicts Newton’s 3rd law of motion!

Sometimes out-convergable by using higher lmax-cutoff

and LOs

Shown correction terms let the drift force vanish

while using a relatively small lmax cutoff

Tradeoff between accuracy and performance in practise

(Force calculation levels)
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FORCE CORRECTION TERMS
Effect on Drift Force

4.7. Computational results
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(a) Ti is displaced along the x axis. Symbols are designated as in Fig. 4.8.

lmax

(b) O is displaced towards Ti. Symbols are designated as in Fig. 4.8.

67

black: Yu et al.

green: Core-tail correction

blue : Surface terms (kinetic)

red : More surface terms

D. A. Klüppelberg, Key Technologies (Schriften des Forschungszentrums Jülich), 119, PhD Thesis (2015).
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PHONONS
Brief Reminder

Dynamics in solid ← Coulomb interaction between electrons and nuclei

Decoupled dynamics ← Mass difference of electrons and nuclei (Born–Oppenheimer)

ℋBO(𝝉) = −1
2

∑
𝑖

∂2

∂𝒓2
𝑖

+ 1
2

∑
𝑖≠𝑗

1
∣𝒓𝑖 − 𝒓𝑗∣

− ∑
𝑖,𝜅

𝑍𝜅
∣𝒓𝑖 − 𝝉𝜅∣

+ 1
2
∑
𝜅≠𝜇

𝑍𝜅𝑍𝜇

∣𝝉𝜅 − 𝝉𝜇∣
Wavefunctions and energies of the nuclei by solving

(−1
2

∑
𝜅

1
𝑀𝜅

∂2

∂𝝉2
𝜅

+ 𝐸BO(𝝉))𝛹(𝝉) = 𝐸𝛹(𝝉)

Individual infinitesimal ion position shift specified by respective phonon vector

𝒘𝑹
𝛼 (𝒒) = 𝑸𝛼(𝒒)ei𝒒𝑹 + 𝑸∗

𝛼(𝒒)e−i𝒒𝑹

𝛼 𝒒𝒘𝟎
𝛼(𝒒)
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FINITE DISPLACEMENT METHOD
Phonons

Born–Oppenheimer energy relates to total energy of ab-initio calculation

Finite Displacement Method: Finding the Force-Constant Matrix (FCM)

𝐸BO(𝒖) = 𝐸(0)
BO + 1

2
∑
𝑹𝜅𝛽

∑
𝑹′𝜅′𝛽′

∂2𝐸BO

∂𝜏𝑹𝜅𝛽 ∂𝜏𝑹′𝜅′𝛽′
𝑢𝑹𝜅𝛽 𝑢𝑹′𝜅′𝛽′ + …

Fourier transform of FCM → Dynamical Matrix (Complete lattice dynamics!)

𝐷𝜅𝛽,𝜅′𝛽′(𝒒) = ∑
𝑹′

∂2𝐸BO

∂𝜏𝟎𝜅𝛽 ∂𝜏𝑹′𝜅′𝛽′
ei𝒒𝑹′

Low Programming

Effort ⇔ Heavy

Calculation Effort

(Supercells required)

Requires exact forces
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DENSITY FUNCTIONAL PERTURBATION THEORY (DFPT)
Application to phonons

Dynamical Matrix from 2nd variation of DFT total energy

𝐸(2)
tot (𝒒) = ∫d3𝑟 𝜌(1)(𝒓, 𝒒)𝑉 (1)

ext (𝒓, 𝒒) + ∫d3𝑟 𝜌(0)(𝒓)𝑉 (2)
ext (𝒓, 𝒒) + 𝐸(2)

ii (𝒒)

= 𝑸†
𝛽(𝒒)𝐷𝛽𝛼(𝒒)𝑸𝛼(𝒒) + c.c.

DFPT for varied quantities

Variational ansatz → Intrinsic robustness

Exploits lattice periodicity → One unit cell

One unit cell → Equal complexity for any 𝒒
Only standard DFT output (wavefunctions,

energies) required

Similarities to DFT algorithm

S. Y. Savrasov, Phys. Rev. B 54, 16470 (1996). | S. Baroni, Rev. Mod. Phys. 73, 515 (2001).

http://www.tf.uni-kiel.de/matwis/amat/mw2_ge/

index.html
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RESPONSE FUNCTIONS
Accessable by DFPT

Response functions are connected to first- or higher-order derivatives

of the ground-state total energy

Suitable perturbations for DFPT

Phonons

mechanical deformations

electric fields

magnetic fields

…

DFPT gives access to

Dielectric / piezoelectric properties

Phonons / elastic properties

Superconductivity

Thermodynamic quantities

…
7238 GIANNQZZI, de GIRONCOI I PA@ONE, AND BARON& 43
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DENSITY FUNCTIONAL PERTURBATION THEORY
General Justification

Ground state density of effective Kohn–Sham

system corresponds to ground state density of

interacting system

Valid for any external potential either

unperturbed or perturbed:

ℋ = ℋ(0) + (𝑉ext − 𝑉 (0)
ext )

Variations of quantities that are functionals of

the density can be determined with the DFT

method and the Kohn–Sham system by

choosing the respective external potential

Perturbations of real systems can be exam-

ined by applying perturbation theory to the

Kohn–Sham Hamiltonian

https://terraingallery.org

Slide 15 29



RAYLEIGH-SCHRÖDINGER PERTURBATION THEORY
Relevant for DFPT

Perturbation with strenght 𝜆 small enough so that

𝑓(𝜆) =
∞

∑
𝑖=0

𝜆𝑖𝑓 (𝑖)(𝜆) , 𝑓 (𝑖)(𝜆) = d𝑖𝑓(𝜆)
d𝜆𝑖 ∣

𝜆=0

A perturbed Hamiltonian fulfills the Schrödinger equation

ℋ(𝜆) = ℋ(0) + 𝒱ext(𝜆) ,
∞

∑
𝑘=0

𝜆𝑘(
𝑘

∑
𝑖=0

(ℋ(𝑖) − 𝜖(𝑖))∣𝛹 (𝑘−𝑖)⟩) = 0

In 1st order, the Sternheimer equation turns out

(ℋ(0) − 𝜖(0)
𝑖 )∣𝛹 (1)

𝑖 ⟩ = −(ℋ(1) − 𝜖(1)
𝑖 )∣𝛹 (0)

𝑖 ⟩ ⇒ ∣𝛹 (1)
𝑖 ⟩ = ∑

𝑘∈I⊥
∣𝛹 (0)

𝑘 ⟩
⟨𝛹 (0)

𝑘 ∣𝐻(1)∣𝛹 (0)
𝑖 ⟩

𝜖(0)
𝑖 − 𝜖(0)

𝑘
Hellmann–Feynman theorem consistent with 1st order energy

𝜖(1) = ∂𝜖
∂𝜆

= ∫ d3𝑟 𝛹 (0)∗ ∂ℋ
∂𝜆

𝛹 (0) = ⟨𝛹 (0)∣∂ℋ
∂𝜆

∣𝛹 (0)⟩ = ⟨𝛹 (0)∣∂𝒱
∂𝜆

∣𝛹 (0)⟩
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DENSITY FUNCTIONAL PERTURBATION THEORY
Linear response and 2𝑛 + 1 theorem

Let 𝑉 L
ext(𝒓) be a general external potential with L = {𝜆𝑖 ∶ 𝑖 ∈ [1, 𝑝]} minimizing

𝐸L
0 = 𝐹[𝜌L0] + ∫ d3𝑟 𝜌L0(𝒓)𝑉 L

ext(𝒓) ,

Direct dependency of the external potential and implicit dependency of the

ground-state density on 𝜆 leads to
∂𝐸L

0
∂𝜆𝑗

= ∫ d3𝑟
δ𝐸L

0
δ𝜌L0(𝒓)

∂𝜌L0(𝒓)
∂𝜆𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

+ ∫ d3𝑟 𝜌L0(𝒓)∂𝑉 L
ext

∂𝜆𝑗

∂2𝐸L
0

∂𝜆𝑖∂𝜆𝑗
= ∫ d3𝑟 𝜌L0(𝒓)∂2𝑉 L

ext(𝒓)
∂𝜆𝑖∂𝜆𝑗

+ ∫ d3𝑟 ∂𝜌L0(𝒓)
∂𝜆𝑖

∂𝑉 L
ext(𝒓)
∂𝜆𝑗

⇒ 2nd derivative of total energy ↔ Linear derivative of electronic density

⇒ 1st derivative of total energy ↔ No derivative of electronic density

In general: 2𝑛 + 1th deriv. of total energy ↔ 𝑛th deriv. of electronic density
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DENSITY FUNCTIONAL PERTURBATION THEORY
Variational character

Sternheimer equation from minimizing 𝐸(2)
el with respect to 𝛹 (1) and given 𝛹 (1) ⟂ 𝛹 (0)

𝐸(2)
el [{𝛹 (0)}; {𝛹 (1)}] =

c

∑
𝑖=1

(⟨𝛹 (0)
𝑖 ∣(𝒯 + 𝒱ext)

(2)∣𝛹 (0)
𝑖 ⟩ + ⟨𝛹 (1)

𝑖 ∣(ℋ − 𝜖𝑖)
(0)∣𝛹 (1)

𝑖 ⟩

+⟨𝛹 (0)
𝑖 ∣(𝒯 + 𝒱ext)

(1)∣𝛹 (1)
𝑖 ⟩ + ⟨𝛹 (1)

𝑖 ∣(𝒯 + 𝒱ext)
(1)∣𝛹 (0)

𝑖 ⟩)

+1
2

∫ d3𝑟 d3𝑟′
∂2𝐸Hxc[𝜌(0)]

∂𝜌(0)(𝒓)∂𝜌(0)(𝒓′)
𝜌(1)(𝒓)𝜌(1)(𝒓′)

+ ∫ d3𝑟 d
d𝜆

∂𝐸Hxc[𝜌(0)]
∂𝜌(0)(𝒓′)

∣
𝜆=0

𝜌(1)(𝒓′) + 1
2

d2𝐸Hxc[𝜌(0)]
d𝜆2 ∣

𝜆=0

⇒ 1st-order variation of the wavefunction is variational!

⇒ Variational solutions only on average equal to pointwise solutions of real system

⇒ Small errors are damped in DFPT due to variational formulation
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ALL-ELECTRON FLAPW & DFPT
Challenges

Core-electron wave functions: Exact solutions of radial Schrödinger(Dirac) equation

Full external 1 / 𝑟 potential without approximations

Valence-electron wave functions: Variational (Kohn–Sham), LAPW basis set

𝜑(0)𝒘
𝒌,𝑮 (𝒓) =

⎧
{{
⎨
{{
⎩

1√
𝑁𝛺

ei(𝒌+𝑮)𝒓, 𝒓 ∈ IR

1√
𝑁

∑
𝑙𝑚𝑝

𝑎𝛼𝑹𝒌𝑮
𝑙𝑚𝑝𝒘 𝑢𝛼𝑹

𝑙𝑝 (∣𝒓 − 𝒓𝛼𝑹𝒘∣) Y𝑙𝑚( 𝒓 − 𝒓𝛼𝑹𝒘
∣𝒓 − 𝒓𝛼𝑹𝒘∣

), 𝒓 ∈ MT(𝛼, 𝑹)

Variation of valence-electron wavefunctions not fully covered by LAPW Hilbert space

𝛹 (1)
𝑛𝒌 (𝒓) = ∑

𝜿=±𝒒
∑
𝑮

(𝑧(1)
𝑮 (𝑛𝒌; 𝜿, 𝛼)𝜑(0)𝟎

𝒌+𝜿,𝑮(𝒓) + 𝑧(0)
𝑮 (𝑛𝒌; 𝜿)𝜑(1)𝒘

𝒌+𝜿,𝑮(𝒓)) , 𝜑(1)
𝒌′𝑮(𝒓) = 𝒘⊤

𝛼 ⋅ [i(𝒌′ + 𝑮) − 𝛁]𝜑(0)
𝒌′𝑮(𝒓) [𝒓 ∈ MT(𝛼, 𝑹)]

⇒ Emergence of additional terms complicating DFPT formalism

– Pulay terms account for discrepancy between exact and variational wavefunctions

– Surface terms correct discontinuities between interstitial and muffin-tin regions

P. Pulay, Mol. Phys., 17, 197 (1969).

D. A. Klüppelberg, Key Technologies (Schriften des Forschungszentrums Jülich), 119, PhD Thesis (2015).
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P. Pulay, Mol. Phys., 17, 197 (1969).

D. A. Klüppelberg, Key Technologies (Schriften des Forschungszentrums Jülich), 119, PhD Thesis (2015).
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ALL-ELECTRON FLAPW & DFPT
Challenges

Core-electron wave functions: Exact solutions of radial Schrödinger(Dirac) equation

Full external 1 / 𝑟 potential without approximations

Valence-electron wave functions: Variational (Kohn–Sham), LAPW basis set
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⎨
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FIRST VARIATION OF THE DENSITY
All-electron FLAPW & DFPT

Let’s focus on

𝐸(2)
tot (𝒒) = ∫d3𝑟 𝜌(1)(𝒓, 𝒒)𝑉 (1)

ext (𝒓, 𝒒) + ∫d3𝑟 𝜌(0)(𝒓)𝑉 (2)
ext (𝒓, 𝒒) + 𝐸(2)

ii (𝒒)

Variation of the Schrödinger equation results in Sternheimer equation

∑
𝑚

⟨𝛹 (0)
𝒌±𝒒,𝑝∣ℋ0 − 𝜀(0)

𝑛,𝒌∣𝛹 (0)
𝒌±𝒒,𝑚⟩

𝑉
𝒛(1)

𝑚 (𝑛𝒌; 𝛼 ±𝒒) = − ∑
𝐺

⟨𝛹 (0)
𝒌±𝒒,𝑝∣𝑽 (1)𝛼±

eff ∣𝛹 (0)
𝒌,𝑛⟩

𝑉

−⟨𝜳 (1)𝛼∓
𝒌±𝒒,𝑝∣ℋ0 − 𝜀(0)

𝑛,𝒌∣𝛹 (0)
𝒌,𝑛⟩

𝑉
− ⟨𝛹 (0)

𝒌±𝒒,𝑝∣ℋ0 − 𝜀(0)
𝑛,𝒌∣𝜳 (1)𝛼±

𝒌,𝑛 ⟩
𝑉

− ∑
𝑹

e±i𝒒𝑹 ∮
∂MT(𝛼,𝑹)

̂𝒆𝛹 (0)∗
𝒌±𝒒,𝑝[ℋ0 − 𝜀(0)

𝑛,𝒌]
SF

𝛹 (0)
𝒌,𝑛 d𝑺 .

⇒ LAPW basis entails additional Pulay and surface terms

Self-consistent solution of Sternheimer equation → 1st-order electron density

𝜌(1)(𝒓, 𝒒) = ∑
𝛼𝑛𝒌

2𝑓 (0)
𝑛𝒌(𝛹 (0)

𝑛𝒌 (𝒓))
∗
(𝑸⊤

𝛼(𝒒) ⋅ 𝜳 (1)𝛼
𝑛𝒌 (𝒓, +𝒒) + 𝑸†

𝛼(𝒒) ⋅ 𝜳 (1)𝛼
𝑛𝒌 (𝒓, −𝒒))

R. M. Sternheimer, Phys. Rev., 96, 951 (1954).
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STERNHEIMER SELF-CONSISTENCY CYCLE
Dynamic handling of electron screening
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FULL FIRST VARIATION OF THE DENSITY
Silicon Carbide

𝜌(1)(𝒓, 𝒒) = ∑
𝛼𝑛𝒌

2𝑓 (0)
𝑛𝒌(𝛹 (0)

𝑛𝒌 (𝒓))
∗
(𝑸⊤

𝛼(𝒒) ⋅ 𝜳 (1)𝛼
𝑛𝒌 (𝒓, +𝒒) + 𝑸†

𝛼(𝒒) ⋅ 𝜳 (1)𝛼
𝑛𝒌 (𝒓, −𝒒))

Displaced atom 𝛼: Silicon Displaced atom 𝛼: Carbon

https://upload.wikimedia.org/wikipedia/com-

mons/4/45/Zincblende_structure.png,

(visited 24th March 2019)
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MATRIX WEINERT METHOD
2nd-order external potential

Goal: Solve Poisson equation

∆(𝛁𝛁⊤𝑉ext) ∝ 𝛁𝛁⊤𝜌

Analogous multipole moments

𝑞𝛼
𝑙𝑚 = ∫

MT𝛼

d3𝑟 Y∗
lm( ̂𝒓)∣𝒓𝑙 − 𝝉𝛼∣𝑙𝛁𝛁⊤𝜌(𝒓)

⇒ Correct interstitial potential from

pseudo-charge density

𝑉 𝛼(2)
IR (𝒓) = ∑

𝑮≠𝟎

4π
𝐺2 𝜌ps(𝑮)ei𝑮⋅𝒓

𝑅MT𝛼
𝑅MT𝛽

𝜏𝛼 𝜏𝛽

Muffin-tin potential 𝑉 𝛼(2)
MT (𝒓𝛼 + 𝝉𝛼) from boundary-value problem using interstitial

potential 𝑉 𝛼(2)
IR (𝒓) on MT boundary and derivative of real density 𝛁𝛁⊤𝜌

⇒ External potential variations do not require self-consistent density variations
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SECOND-ORDER ION–ION INTERACTION
Weinert Again

Ion–ion interaction similar form to the
electron–ion interaction

𝐸(2)
tot (𝒒) = ∫d3𝑟 𝜌(1)(𝒓, 𝒒)𝑉 (1)

ext (𝒓, 𝒒)

+ ∫d3𝑟 𝜌(0)(𝒓)𝑉 (2)
ext (𝒓, 𝒒) + 𝐸(2)

ii (𝒒)

⇒ Suggesting, e.g., Weinert method

𝝉𝛼

𝝉𝛽

Second-order ion–ion interaction can be rewritten to (𝜉(𝒒) = 1 or 2)

𝐸(2)
ii (𝒒) = ∑

𝛼𝛽
𝜉(𝒒)𝑸†

𝛽(𝒒) ∑
𝑹≠𝟎,
if 𝛼=𝛽

(1 − e−i𝒒⋅𝑹)∇𝛼∇⊤
𝛽 ∣𝝉𝛼 − 𝝉𝛽 − 𝑹∣

−1
𝑸𝛼(𝒒) + c.c.

Weinert method → interstitial and muffin-tin representation of matrix expression

D. A. Klüppelberg, Key Technologies (Schriften des Forschungszentrums Jülich), 119, PhD Thesis (2015).
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DENSITY FUNCTIONAL PERTURBATION THEORY
Beyond Hellmann–Feynman: Total Energy

Calculation of Dynamical Matrix requires 2nd-order variation of total energy

So far we discussed the basic Hellmann–Feynman contribution

𝐸(2)
tot (𝒒) = ∫d3𝑟 𝜌(1)(𝒓, 𝒒)𝑉 (1)

ext (𝒓, 𝒒) + ∫d3𝑟 𝜌(0)(𝒓)𝑉 (2)
ext (𝒓, 𝒒) + 𝐸(2)

ii (𝒒)

= 𝑸†
𝛽(𝒒)𝐷𝛽𝛼(𝒒)𝑸𝛼(𝒒) + c.c.

LAPW basis → terms beyond basic naive contribution

𝐸(2)
tot = 𝐸(2)

tot, basic + 𝐸(2)
tot, Pulay + 𝐸(2)

tot, surface

𝐸(2)
tot, basic: Naive contribution

𝐸(2)
tot, Pulay: Corrects deviations of the variational wave functions represented in the finite

LAPW basis from the exact pointwise solutions of the Schrödinger equation

𝐸(2)
tot, surface: Corrects small discontinuities at the muffin-tin sphere boundary, caused by

displacive perturbations
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DENSITY FUNCTIONAL PERTURBATION THEORY
Beyond Hellmann–Feynman: Total Energy

Calculation of Dynamical Matrix requires 2nd-order variation of total energy

So far we discussed the basic Hellmann–Feynman contribution

𝐸(2)
tot (𝒒) = ∫d3𝑟 𝜌(1)(𝒓, 𝒒)𝑉 (1)

ext (𝒓, 𝒒) + ∫d3𝑟 𝜌(0)(𝒓)𝑉 (2)
ext (𝒓, 𝒒) + 𝐸(2)

ii (𝒒)

= 𝑸†
𝛽(𝒒)𝐷𝛽𝛼(𝒒)𝑸𝛼(𝒒) + c.c.

LAPW basis → terms beyond basic naive contribution

𝐸(2)
tot = 𝐸(2)

tot, basic + 𝐸(2)
tot, Pulay + 𝐸(2)

tot, surface

𝐸(2)
tot, basic: Naive contribution

𝐸(2)
tot, Pulay: Corrects deviations of the variational wave functions represented in the finite

LAPW basis from the exact pointwise solutions of the Schrödinger equation

𝐸(2)
tot, surface: Corrects small discontinuities at the muffin-tin sphere boundary, caused by

displacive perturbations
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VALENCE PULAY CONTRIBUTIONS
Dynamical Matrix & All-Electron FLAPW

Pulay terms also occur in second variation of total energy

𝐸(2),tot
Pulay =∫ d3𝑟 𝜌(1)(𝒓)𝑉 (1)

eff (𝒓) + ∑
𝑛𝒌

𝑓 (0)
𝑛𝒌[2⟨𝛹 (1)

𝑛𝒌 ∣ℋ0 − 𝜖(0)
𝑛𝒌∣𝛹 (1)

𝑛𝒌 ⟩

+⟨𝛹 (0)
𝑛𝒌 ∣ℋ0 − 𝜖(0)

𝑛𝒌∣𝛹 (2)
𝑛𝒌 ⟩ + ⟨𝛹 (2)

𝑛𝒌 ∣ℋ0 − 𝜖(0)
𝑛𝒌∣𝛹 (0)

𝑛𝒌 ⟩]

Phonon with wavevector 𝒒 shifts Bloch character of varied wavefunctions

𝛹 (1)
𝑛𝒌 = ∑

𝜿=±𝒒
∑
𝑮

[𝑧(1)
𝑮 (𝑛𝒌; 𝜿)𝜙(0)

𝒌+𝜿,𝑮 + 𝑧(0)
𝑮 (𝑛𝒌; 𝜿)𝜙(1)

𝒌+𝜿,𝑮]

𝛹 (2)
𝑛𝒌 = ∑

𝜿=𝟎,±2𝒒
∑
𝑮

[𝑧(2)
𝑮 (𝑛𝒌; 𝜿)𝜙(0)

𝒌+𝜿,𝑮 + 𝑧(1)
𝑮 (𝑛𝒌; 𝜿)𝜙(1)

𝒌+𝜿,𝑮 + 𝑧(0)
𝑮 (𝑛𝒌; 𝜿)𝜙(2)

𝒌+𝜿,𝑮]

D. A. Klüppelberg, Key Technologies (Schriften des Forschungszentrums Jülich), 119, PhD Thesis (2015).
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CORE PULAY AND SURFACE CONTRIBUTIONS
Dynamical Matrix & All-Electron FLAPW

All-Electron → core-electron terms variation

∑
𝑛

[2⟨𝛹 (1)
𝑛 ∣ℋ0 − 𝜖(0)

𝑛 ∣𝛹 (1)
𝑛 ⟩ + ⟨𝛹 (0)

𝑛 ∣ℋ0 − 𝜖(0)
𝑛 ∣𝛹 (2)

𝑛 ⟩ + ⟨𝛹 (2)
𝑛 ∣ℋ0 − 𝜖(0)

𝑛 ∣𝛹 (0)
𝑛 ⟩]

= −𝑸†
𝛼 ∫

𝛺
d3𝑟 ∇𝑉 (0)

nsph(𝒓) ∑
𝑛

∇⊤𝜌(0)
𝑛 (𝒓)𝑸𝜶 + c.c.

Total energy contains discontinuities at muffin-tin surfaces

⇒ Variation generates surface terms

d
d𝝉𝛼

𝑓(𝒓) = [∑
𝛽

∫
IR(𝛽)

d3𝑟 d𝑓(𝒓)
d𝝉𝛼

+ ∫
MT(𝛽)

d3𝑟 d𝑓(𝒓)
d𝝉𝛼

] + ∮
∂MT(𝛼)

d𝑆 [𝑓MT(𝒓) − 𝑓IR(𝒓)] ̂𝒆𝒓

D. A. Klüppelberg, Key Technologies (Schriften des Forschungszentrums Jülich), 119, PhD Thesis (2015).
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SUMMARY
Forces & DFPT

Forces

Derivative of DFT total energy

FLAPW method leads to additional terms (Core, Pulay, Surface)

Forces for geometry optimization

Dynamical matrix (force-constant matrix) for phonons but inefficient

DFPT

Powerful tool for ab-initio calculation of response functions

Dynamical matrix relates to second-order variation of total energy

Second-order variation of total energy contains response functions accessable by DFPT

FLAPW method makes DFPT more challenging
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Thank you for your attention!
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