FLEUR: The Jülich FLAPW code family
Symbol - externer Link

The FLEUR code family is a program package for calculating ground-state as well as excited-state properties of solids. It is based on the full-potential linearized augmented-plane-wave (FLAPW) method [1-4]. The strength of the FLEUR code [5,6] lies in applications to bulk, semi-infinite, two- and one-dimensional solids [7], solids of nearly all chemical elements of the periodic table, solids with complex open structures, low symmetry, with complex non-collinear magnetism [8] in combination with spin-orbit interaction [9,10], external electric fields, and the treatment of spin-dependent transport properties [11,12]. It is an all-electron method and thus treats core and valence electrons and can deal with hyperfine properties. The inclusion of local orbitals allows a systematic extension of the LAPW basis that enables a precise treatment of semicore states [13], unoccupied states [14,15], and an elimination of the linearization error in general [16]. A large variety of local and semi-local (GGA) exchange and correlation functionals are implemented, including the LDA+U approach. In recent years the code has been developed further to make contact to electronically complex materials. Hybrid functionals [17,18] and the optimized-effective-potential (OEP) method [15,19] have been implemented. Wannier functions [20] can be constructed to make contact to realistic model Hamiltonians. Excitations can be treated on the basis of the GW approximation [21,22] and ladder diagrams are included to compute spin-wave excitations [23]. The Hubbard U can be calculated in the constrained random phase approximation (cRPA) [24].

Literature:

  1. O.K. Andersen, "Linear methods in band theory", Symbol - externer LinkPhys. Rev. B 12, 3060 (1975)
  2. D. D. Koelling and G. O. Arbman, Use of energy derivative of the radial solution in an augmented plane wave method: application to copper, Symbol - externer LinkJ. Phys. F: Metal Phys. 5, 2041 (1975)
  3. E. Wimmer,A.J. Freeman, H. Krakauer, and M. Weinert, "Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule", Symbol - externer LinkPhys. Rev. B 24, 864 (1981)
  4. M. Weinert, E. Wimmer, and A.J. Freeman, Total-energy all-electron density functional method for bulk solids and surfaces, Symbol - externer LinkPhys. Rev. B 26, 4571 (1982)
  5. S. Blügel and G. Bihlmayer, "Symbol - externer LinkFull-Potential Linearized Augmented Planewave Method", in Computational Nanoscience: Do It Yourself! edited by J. Grotendorst, S. Blügel, and D. Marx, NIC Series Vol. 31, p. 85 (John von Neumann Institute for Computing, Jülich, 2006)
  6. Symbol - externer Linkhttp://www.flapw.de
  7. Y. Mokrousov, G. Bihlmayer, and S. Blügel, "A full-potential linearized augmented planewave method for one-dimensional systems: gold nanowire and iron monowires in a gold tube", Symbol - externer LinkPhys. Rev. B. 72, 045402 (2005)
  8. Ph. Kurz, F. Foerster, L.Nordström, G. Bihlmayer, and S. Blügel, "Ab initio treatment of non-collinear magnets with the full-potential linearized augmented planewave method", Symbol - externer LinkPhys. Rev. B 69, 024415 (2004)
  9. M. Heide, G. Bihlmayer, and S. Blügel, "Describing Dzyaloshinskii-Moriya spirals from first principles", Symbol - externer LinkPhysica B 404, 2678 (2009)
  10. B. Zimmermann, M. Heide, G. Bihlmayer, and S. Blügel, "First-principles analysis of a homochiral cycloidal magnetic structure in a monolayer Cr on W(110)", Symbol - externer LinkPhys. Rev. B 90, 115427 (2014)
  11. D. Wortmann, H. Ishida, and S. Blügel, "Ab initio Green-function formulation of the transfer matrix: Application to complex bandstructures", Symbol - externer LinkPhys. Rev. B 65, 165103 (2002)
  12. D. Wortmann, H. Ishida, and S. Blügel, "Embedded Green-function approach to the ballistic electron transport through an interface", Symbol - externer LinkPhys. Rev. B 66, 075113 (2002)
  13. D. Singh, "Ground-state properties of lanthanum: Treatment of extended-core states", Symbol - externer LinkPhys. Rev. B 43, 6388 (1991)
  14. C. Friedrich, A. Schindlmayr, S, Blügel, and T. Kotani, "Elimination of the linearization error in GW calculations based on the linearized augmented-plane-wave method", Symbol - externer LinkPhys. Rev. B 74, 045104 (2006)
  15. M. Betzinger, C. Friedrich, S. Blügel, and A. Görling, "Local exact exchange potentials within the all-electron FLAPW method and a comparison with pseudopotential results", Symbol - externer LinkPhys. Rev. B 83, 045105 (2011)
  16. G. Michalicek, M. Betzinger, C. Friedrich, and S. Blügel, "Elimination of the linearization error and improved basis-set convergence within the FLAPW method", Symbol - externer LinkComp. Phys. Commun. 184, 2670 (2013)
  17. M. Betzinger, C. Friedrich, and S. Blügel, "Hybrid functionals within the all-electron FLAPW method: implementation and applications of PBE0", Symbol - externer LinkPhys. Rev. B 81, 195117 (2010)
  18. M. Schlipf, M. Betzinger, C. Friedrich, M. Ležaić, and S. Blügel, "HSE hybrid functional within the FLAPW method and its application to GdN", Symbol - externer LinkPhys. Rev. B 84, 125142 (2011)
  19. M. Betzinger, C. Friedrich, A. Görling, and S. Blügel, "Precise response functions in all-electron methods: Application to the optimized-effective-potential approach", Symbol - externer LinkPhys. Rev. B 85, 245124 (2012)
  20. F. Freimuth, Y. Mokrousov, D. Wortmann, S. Heinze, and S. Blügel, "Maximally Localized Wannier Functions within the FLAPW formalism", Symbol - externer LinkPhys. Rev. B. 78, 035120 (2008)
  21. C. Friedrich, S. Blügel, and A. Schindlmayr, "Efficient implementation of the GW approximation within the all-electron FLAPW method", Symbol - externer LinkPhys. Rev. B 81, 125102 (2010)
  22. C. Friedrich, S. Blügel, and A. Schindlmayr, "Efficient calculation of the Coulomb matrix and its expansion around k=0 within the FLAPW method", Symbol - externer LinkComp. Phys. Comm. 180, 347 (2009)
  23. E. Şaşıoğlu, A. Schindlmayr, Ch. Friedrich, F. Freimuth, and S. Blügel, "Wannier-function approach to spin excitations in solids", Symbol - externer LinkPhys. Rev. B 81, 054434 (2010)
  24. E. Şaşıoğlu, C. Friedrich, and S. Blügel, "Effective Coulomb interaction in transition metals from constrained random-phase approximation", Symbol - externer LinkPhys. Rev. B 83, 121101(R) (2011)
Forschungszentrum Jülich, D-52425 Jülich Institute for Advanced Simulation
Institute Quantum Theory of Materials Impressum
Webmaster
Page last modified:
October 28, 2014