

Hubbard *U* parameters from constrained random-phase approximation

C. Friedrich

Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany

Correlation strength

DRIVING THE EXASCALE JÜLICH

Forschungszentrum

Approximation or Downfolding

HF, DFT (LSDA, GGA), GW

LDA+U, LDA+DMFT, LDA+Gutzwiller

Downfolding

First quantization

$$-\frac{1}{2}\sum_{i} \nabla_{\mathbf{r}_{i}}^{2} + \sum_{i} v_{\text{ext}}(\mathbf{r}_{i}) + \frac{1}{2}\sum_{i,j} \frac{1}{\mathbf{r}_{i} - \mathbf{r}_{j}} \Psi_{n}(\mathbf{r}_{1}, \mathbf{r}_{2}, ...) = E_{n}\Psi_{n}(\mathbf{r}_{1}, \mathbf{r}_{2}, ...)$$

-

Second quantization

Г

$$\left[-\sum_{\substack{\mathbf{RR'}\\ab,\sigma}} t^{ab\sigma}_{\mathbf{RR'}} \hat{c}^{\dagger}_{\mathbf{R}a\sigma} \hat{c}_{\mathbf{R'}b\sigma} + \frac{1}{2} \sum_{\substack{\mathbf{RR'R''R'''}\\abcd,\sigma\sigma'}} V^{abcd}_{\mathbf{RR'R''R'''}} \hat{c}^{\dagger}_{\mathbf{R}a\sigma} \hat{c}^{\dagger}_{\mathbf{R'}b\sigma'} \hat{c}_{\mathbf{R''}d\sigma'} \hat{c}_{\mathbf{R''}c\sigma}\right] \Psi_n = E_n \Psi_n$$

Downfolding \rightarrow **One-band Hubbard model** $\begin{bmatrix} -t \sum_{\langle \mathbf{R}, \mathbf{R}' \rangle} \hat{c}^{\dagger}_{\mathbf{R}} \hat{c}_{\mathbf{R}'} + \epsilon_0 \sum_{\mathbf{R}} \hat{c}^{\dagger}_{\mathbf{R}} \hat{c}_{\mathbf{R}} + U \sum_{\mathbf{R}} \hat{n}_{\mathbf{R}\uparrow} \hat{n}_{\mathbf{R}\downarrow} \end{bmatrix} \Psi_n = E_n \Psi_n$ Screen

Г

Hubbard U parameter: electron-electron interaction and screening by the other electrons

Combining DFT and many-body methods

Correlated Hilbert space

Devide Hilbert space into two parts:

- Localized Hilbert space (*I* space)
- **Rest** Hilbert space (*r* space)

Hubbard U from first principles

Constrained local-density approximation (cLDA)

[Anisimov and Gunnarsson, PRB 43, 7570 (1991); Cococchioni and de Gironcoli, PRB 71, 035105 (2005)]

$$U = \frac{\partial^2 E}{\partial n_d^2} - \frac{\partial^2 E^{\rm KS}}{\partial n_d^2}$$

- Easy to implement.
- Cheap computation.
- BUT: not general.

Constrained random-phase approximation (cRPA)

[Springer and Aryasetiawan et al., PRB 57, 4364 (1998); Kotani, J. Phys. Condens. Matter 12, 2413 (2000)]

- Formulation in many-body perturbation theory.
- Frequency dependence $U(\omega)$ accessible.
- Individual matrix elements (*U*, *J*, off-site *U*).
- BUT: more expensive.

Hubbard U parameters from

constrained random-phase approximation (cRPA)

$$P(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{m}^{\text{occ unocc}} \sum_{m'}^{\text{unocc}} \phi_m(\mathbf{r}) \phi_{m'}^*(\mathbf{r}) \phi_m^*(\mathbf{r}') \left[\frac{1}{\omega - \epsilon_{m'} + \epsilon_m + i\eta} - \frac{1}{\omega + \epsilon_{m'} - \epsilon_m - i\eta} \right]$$

Hubbard U parameters from

constrained random-phase approximation (cRPA)

$$P = P_l + P_r$$

 $U(\omega) = \frac{\upsilon}{1 - vP_r(\omega)}$

r space

 \rightarrow projected onto Wannier functions:

$$w_{\mathbf{R}a}(\mathbf{r}) = \frac{1}{N} \sum_{\mathbf{k}m} T_{\mathbf{R}a}^{\mathbf{k}m} \phi_{\mathbf{k}m}(\mathbf{r})$$

transformation matrix Tdefined such that Wannier functions are (maximally) localized

Constrained RPA (cRPA)

- U is basis independent
- U, J, and off-site U easy to calculate
- $U(\omega)$ accessible
- subspace screening easy to eliminate if bands are disentangled (!)

Entangled bands

Projection method

[Sasioglu et al., PRB 83, 121101 (2011)]

$$P(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{m}^{\text{occ}} \sum_{m'}^{\text{unocc}} \phi_m(\mathbf{r}) \phi_{m'}^*(\mathbf{r}) \phi_m^*(\mathbf{r}') \left[\frac{1}{\omega - \epsilon_{m'} + \epsilon_m + i\eta} - \frac{1}{\omega + \epsilon_{m'} - \epsilon_m - i\eta} \right]^{(*)}$$

$$P(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{m}^{\text{occ}} \sum_{m'}^{\text{unocc}} p_m p_{m'} \phi_m(\mathbf{r}) \phi_{m'}^*(\mathbf{r}) \phi_m^*(\mathbf{r}') \left[\frac{1}{\omega - \epsilon_{m'} + \epsilon_m + i\eta} - \frac{1}{\omega + \epsilon_{m'} - \epsilon_m - i\eta} \right]$$

Disentanglement method

[Miyake et al., PRB 80, 155134 (2009)]

Hybridization between subspace and rest switched off.

- \rightarrow Bands are disentangled.
- \rightarrow Equation (*) is applicable.

Effective parameters

Output file "spex.cou"

Example: Parameters for d states

 $U^{\sigma\sigma'}_{m_1,m_2,m_3,m_4}(\omega)$

• 625 different matrix elements

"Hubbard-Hund" parameters (full d shell)

- 15 different matrix elements (or 8)
- 3 are independent

Kanamori parameters (t_{2g} or e_g Hamiltonian)

- 3 different matrix elements
- 2 are independent

end of standard output

3d transition metals

Hubbard U at surfaces

Sasioglu et al., PRL 109, 146401 (2012)

Computational procedure One-Shot GW

- FLEUR: Self-consistent field calculation
 Density, Exchange-correlation potential
- SPEX: Generate special equidistant k-point set
 k, k', k+k', and 0 must be elements
- FLEUR: Diagonalize Hamiltonian on new k points (non iterative)
 → Kohn-Sham energies and wavefunctions
- SPEX: GW calculation
 - ➔ Quasiparticle energies

spex.inp: JOB GW FULL X:(1-4)

Computational procedure Hubbard *U* (cRPA)

- FLEUR: Self-consistent field calculation
 Density, Exchange-correlation potential
- SPEX: Generate special equidistant k-point set
 k, k', k+k', and 0 must be elements

- FLEUR: Diagonalize Hamiltonian on new k points (non iterative)
 → Kohn-Sham energies and wavefunctions
- SPEX: cRPA calculation
 - Construction of Wannier orbitals (Wannier90 library used for MLWFs)
 - Calculation of P_r
 - Calculation of U and projection onto Wannier basis
 - → Hubbard *U* parameters

spex.inp: JOB SCREENW {0}

Summary

- For strongly correlated systems, methods like LDA+U or LDA+DMFT, which are based on the Hubbard Hamiltonian of a correlated subspace, might be more appropriate than DFT (LDA, GGA) or *GW*.
- These methods require an effective interaction parameter, the Hubbard *U* parameter, which incorporates the screening processes of the electrons that are not included in the correlated subspace.
- The constrained random-phase-approximation (cRPA) is a first-principles method to determine the Hubbard *U* parameter.
- Spex has an implementation of cRPA. Correlated subspace spanned in Wannier basis. Possibility of treating entangled bands.