
DFT METHODS
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Why are there so many DFT codes and why should I consider FLEUR for my research?



MANY CODES ... 
Wikipedia lists >90 DFT codes

Planewaves
Local basis sets

Green functions

LCAO method

Gaussian orbitals

Pseudopotentials

PAW method

All-electron codes

Wavelets

LMTO method

Finite differences

Numerical atomic orbitals
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Basis%sets%e.g.:%
•  Plane%waves%
•  Numerical/Analy8cal%

Localized%basis%sets%
•  (L)APWs%
%
Real%space%grids%
%
Green%func8ons%
%

AllEelectron%
PseudoEpoten8al%
Shape%approxima8ons%
Full%poten8al%
SpinEpolarized%calcula8ons%
%

Finite%difference%approx.%
NonErela8vis8c%equa8on%
ScalarErela8vis8c%approx.%

SpinEorbit%coupling%
Dirac%equa8on%

Local%density%approxima8on%
(LDA),%GGA%

LDA+U%
Hybrid%Func8onals%
GWEApproxima8on%

%

MANY ASPECTS ...



TWO MAIN CRITERIAS OF CLASSIFICATION

Basis set:           Plane waves Localized Basis set Grid/Wavelets       LAPW

Pseudo-
potential

All-electron



BIG CHALLENGE: THE 1/R SINGULARITY

The nuclei potential:

• For large Z many low energy wavefunctions exist that are 
localized close to the nucleus à Core states

• Core states can be treated as completely localized

• These states do not contribute to the chemical binding

• Other states: Valence states

• These are rather delocalized and determine chemical binding

V ⇠ �Z

r



THE 1/R SINGULARITY
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TYPICAL CORE & VALENCE STATES
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Ti: 
1s,2s,2p,3s à core

3p à semi-core
4s,3d à valence

Si: 
1s,2s,2p à core

3s,3p à
valence

Core configuration:

1s22s22p63s23p6

3d104s24p64s24p6=[Kr]



CORE STATES VERSUS VALENCE STATES

• Core states localized              Valence states delocalized

in general:

• Two different parts of function space with different numerics

• Core states can be calculated separately from valence states and vice versa
à valence states see the ion

 c(r > rcut) = 0  v (~r) 6= 0



ALL-ELECTRON 
ßà PSEUDO-POTENTIAL METHODS

Two consequence of the 1/r singularity:

1. Core states

2. Strong oscillations of valence states

• All electron methods: treat the 1/r singularity seriously

• Alternative: modify the potential to make it easier to treat
à pseudo-potential methods
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IDEA BEHIND A PSEUDO-POTENTIAL

r
rc

V (r)
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Replace AE wavefunction by pseudo-
wavefunction

à smooth wavefunction
à same as AE outside some radius

Remove the 1/r singularity
à remove core states
à remove numerical difficulties

Create a smooth potential



TRANSFERABILITY

• Pseudo-potential has been constructed from atomic calculation:
• à It reproduces the correct wavefunction far away from the 

single atom  

• à scattering theory

• à Strictly speaking this works only for a single energy!

• Is the pseudo-potential also good for other situations? 
à Transferability
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ALL-ELECTRON CODE
• We keep the 1/r singularity in the potential
• All electrons incl. core-states are treated in 

the self-consistency cycle
• No pseudo-potentials are used



HOW TO SOLVE A PDE?

• Kohn-Sham equation:

• For a general effective potential this can be only done numerically
• Different schemes have been used, here we discuss:

1. Basis set  è Linear algebra problem
2. Real space grid

DFT: We have to solve a differential equation

✓
�1

2
r2 + Ve↵ (~r)

◆
 (~r) = ✏ (~r)



CRITERIA FOR BASIS SETS

• Efficiency, i.e. how many basis functions are needed?

• How easy is the calculation of the Hamiltonian?

• Is there a specific structure of the eigenvalue problem one can exploit?

• Is the basis set systematic?

• Does the basis set incorporate the correct boundary condifitions?

How to choose a basis set



SYSTEMATIC CONVERGENCE

• Example for wavefunction:

• Residual should be small:

• True wavefunction unkown, so one tests for two different basis set sizes Nb and N’b

• This requires, that the basis set can be improved systematically 
by increasing the basis set size

 Nb(~r) =
NbX

i

ci�i (~r)

| (~r)�  Nb(~r)|

| N0
b(~r)�  Nb(~r)|



STRUCTURE OF EIGENVALUE PROBLEM

• Generalized/Standard form

• Real/Complex matrices? 
• Complex due to boundary condition/basis functions!

• How many eigenvalues does one need?
• Iterative diagonalization (large matrix, few vectors)
• Direct solvers (>5% of eigenvectors?)

• Special structure of the matrix?

• Sparse matrix

[Hij ]~c = ✏[Sij ]~c
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Examples: 

Plane wave basis set Local basis set

✓ Orthonormal basis set
✓ Single convergence parameter: #(PW)
✓ PWs are momentum eigenfunctions
✗ V(r) must be Fourier transformable

à need to use pseudo-potentials
à usually large basis set sizes

✗ Dense potential matrix

�~g (~r) =
1

N
e i~g~r �(~r) =

1

N
e�↵(~r�~R)2

✓ Can be very efficient efficient
✓ Sparse matrix
✗ Numerical local orbitals can be 

difficult to calculate
✗ Atoms moving à basis is changing
✗ Unsystematic convergence 
✗ Density must be in different basis



FLAPW CODE
• Full-potential linearized augmented plane 

wave code
• Combines PW and localized basis set
• Complex but highly versatile method



FLEUR IS SPECIALIZED

Periodic systems

✓ 3d bulk systems (periodic in all directions)

✓ Surface via special ‚film‘ mode

✗ Not so well suited for molecules

All electron method

✓ All elements can be treated

✓ Systematic convergence

✗ Computational expensive, many

convergence parameters
High accuracy

✓ Reference results

✓ Simulation of complex materials

✓ Investigation of small energy differences

Fields of applicability

✓ Magnetism, spin-orbit physics

✓ Heavy elements, complex electronic 

structure

✗ Molecular dynamics


