

How to obtain high-quality results with Fleur

Apr 13, 2021 | **Gregor Michalicek** | Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany

Outline

- Setting the parameters
- Semicore states and ghost bands
- The linearization error

Choice of K_{max} , I^{α}_{max} , and $I^{\alpha}_{nonsphr}$

• Rayleigh expansion of planes waves at MT boundary:

*K*_{max} parameter convergence

fcc Cu

- LAPW basis is nearly linearly dependent.
 - There may be problems due to this when increasing K_{max}.
- If problems arise:
 - It may help to increase lmax.
 - It may help to reduce the MT radii.

Choice of G_{max} and G_{maxXC}

- G_{max} is cutoff for different functions
 - Plane wave part of charge density \(\rho^{PW}(r)\)
 - Plane wave part of potential $V_{\text{eff}}^{\text{PW}}(\mathbf{r})$
 - Step function $\Theta(\mathbf{r})$ indicating the interstitial region
- $V_{\text{eff}}^{\text{PW}}(\mathbf{r})$ and $\Theta(\mathbf{r})$ have infinitely many plane-wave coefficients.
- Interstitial potential contribution to Hamilton matrix:

$$\left\langle \phi_{\mathbf{kG}} \middle| \Theta(\mathbf{r}) V_{\mathsf{eff}}^{\mathsf{PW}}(\mathbf{r}) \middle| \phi_{\mathbf{kG}'} \right
angle$$

Rule

$$G_{\max} \geq G_{\max XC} \geq 2 \cdot K_{\max}$$

Slide 4

• typically $G_{max} \approx 3 \cdot K_{max}$, $G_{maxXC} \approx 2.5 \cdot K_{max}$

Choice of the energy parameters

fcc Ce

- energy center of mass of the /-projected DOS
 - minimizes quadratic error weighted by charge in each eigenstate
- atomic solutions
 - yields more friendly convergence behavior

Choice of MT radii

- Due to different bonding lengths in different materials the R_{MT} are material dependent.
- If calculations have to be compared identical MT radii should be chosen.

Large MT radii

- Faster calculations
- Larger linearization error
- Fewer SCLOs needed
- Some quantities only evaluated in MT

Small MT radii

- Slower calculations
- More stable calculations
- Smaller linearization error
- More SCLOs needed
- More space available for structural relaxations

■ *R*_{MT} = 2.25 *a*₀, lostElectrons = 0.086

g.michalicek@fz-juelich.de

■ *R*_{MT} = 2.20 *a*₀, lostElectrons = 0.100

Slide 7

■ *R*_{MT} = 2.17 *a*₀, lostElectrons = 0.109

■ *R*_{MT} = 2.16 *a*₀, lostElectrons = 0.112

- *R*_{MT} = 2.15 *a*₀, lostElectrons = 0.123
- This error message can also have other causes.
- Other error messages are also possible.

Semicore states and ghost bands - with SCLO

• $R_{\text{MT}} = 2.16 a_0$, lostElectrons = 0.012, SCLO for 3*p* state

Slide 8

JÜLICH Forschungszentrum

Linearization error depending on energy mismatch

fcc Cerium

bcc Vanadium

• $\Delta_l = \sqrt{\parallel u_l(r,\epsilon) - \tilde{u}_l(r,\epsilon) \parallel^2}$

Slide 9

The linearization error and MT radii fcc Ce rock-salt KCI

 lattice constant changes by 1.6% when MT radius is reduced lattice constant changes by 0.4% when MT radii are reduced

The linearization error and unoccupied states

- KS band gap for rock-salt KCl is reduced by 4% by adding one set of HDLOs
- DRIVING THE EXASCA TRANSITION

 KS band gap for fcc Ar is reduced by 19% by adding one set of HDLOs

Conclusions

Guidelines for setting parameters

- $K_{\text{max}}, I_{\text{max}}^{\alpha}, I_{\text{nonsphr}}^{\alpha}$
- $R^{\alpha}_{MT}, E^{\alpha}_{I}$
- G_{max}, G_{maxXC}
- Semicore states and ghost bands
- The linearization error
- Not discussed
 - General numerical DFT parameters, e.g., k point set, Fermi smearing, ...

