

Basic Fleur workflows

Apr 12, 2021 | **Gregor Michalicek** | Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany

Outline

- Invoking Fleur
- Reaching self-consistency
- Calculating a band structure
- Calculating a density of states

Invoking Fleur

- Fleur uses different parallelization schemes: MPI and OpenMP
- OpenMP parallelization can be controlled by setting the OMP_NUM_THREADS environment variable, e.g.,
 - export OMP_NUM_THREADS=3
- Invoking Fleur without MPI parallelization
 - call fleur or fleur_MPI
- Invoking Fleur with MPI parallelization
 - call mpirun -np 2 fleur_MPI
 - MPI command depends on the machine: Also srun or mpiexec.
- On supercomputers the parallelization is partially controlled by the jobscript.
- More details on the parallelization schemes in Fleur in separate talk by Uliana Alekseeva.

Reaching self-consistency

Sometimes running Fleur does not yield well-behaved progress in the convergence process

Iteration:	1	Distance:	11.625649453388078	
Iteration:	2	Distance:	9.3735022175314953	
Iteration:	3	Distance:	9.4073604146575747	
Iteration:	4	Distance:	5.1871680279159609	
Iteration:	5	Distance:	5.3222708799839786	
Iteration:	6	Distance:	5.5609892143282025	
Iteration:	7	Distance:	5.9511958373075702	
Iteration:	8	Distance:	5.9622832176342566	
Iteration:	9	Distance:	5.7344112384776889	
Iteration:	10	Distance:	9.3641887701414674	
*****	******	*****	*****	
Run finished su	ccessful	1 y		
Stop message:				
all done				
******	******	****	*****	

Reaching self-consistency

Sometimes running Fleur does not yield well-behaved progress in the convergence process

Options in such a case:

- Continue calculation by invoking Fleur again
- Delete mixing_history files, then continue the calculation.
- Delete mixing_history files, change scfLoop parameters to a more defensive setup, then continue the calculation.
- Check output files on hints what went wrong.
 - There may be a problem in the setup.
 - There may be a ghost states.
 - Are the electrons where they are supposed to be?
 - If problem is found fix input and start over again.
- For large unit cells the usage of the preconditioner may help.
 - See Fleur documentation and article by Miriam Winkelmann et al. (Phys. Rev. B 102, 195138 (2020))

Band structure calculations

- 1 Reach self-consistency.
- 2 Select an adequate k-point path in the inp.xml file.
 - For most unit cells there is a default k-point path for band structure calculations generated.
 - You may also generate an additional k-point path, e.g., with:
 - inpgen -inp.xml -kpt band=60
 - inpgen -inp.xml -kpt band=100 -kptsPath
 "gamma=0,0,0;x=0.5,0.5,0.5"
- 3 Set band switch in inp.xml to "T".
- 4 Run Fleur.
 - Fleur will generate bands.1 (and bands.2) files and a gnuplot script band.gnu.

- with HDF5: Also a **banddos.hdf** file.
- 5 Run gnuplot script:
 - gnuplot < band.gnu > bands.ps

Band structure calculations: gnuplot script visualization

g.michalicek@fz-juelich.de

Band structure calculations: Alternative plotting with masci-tools

- The masci-tools provide an easy-to-use way of extracting and plotting the data in the banddos.hdf file.
- https://pypi.org/project/masci-tools/

g.michalicek@fz-juelich.de

Band structure calculations: masci-tools visualization with d character highlighting

THE EXASCALE

Density of states calculations

- 1 Reach self-consistency
- 2 Adjust several parameters in inp.xml to your needs for the DOS:
 - /cell/bzIntegration/@mode ("hist" or "tria")
 - /output/bandDOS/@minEnergy (lower energy for the DOS generation)
 - /output/bandDOS/@maxEnergy (upper energy for the DOS generation)
 - /output/bandDos/@sigma (smoothen the DOS)
- 3 (Generate and) select an adequate k-point set for the DOS calculation.
- 4 Activate the dos switch in inp.xml
- 5 Run Fleur
- 6 Data is stored in Local.1 (and Local.2) and banddos.hdf
 - See Fleur documentation on the extraction of the data

Density of states calculations: The art of producing a nice DOS (1)

The quality of the DOS depends on the interplay of many different parameters and material properties:

- k-point set
- BZ integration mode
- Band dispersion
- Choice of DOS energy window
- Choice of number of energy mesh points
- Smearing of the DOS

Density of states calculations: The art of producing a nice DOS (2)

- DOS for Si
- Left: Smearing too large to see features or even the band gap
- Center: k-point set too coarse for band dispersion and smearing
- Right: Smearing, dispersion, and k-point set match

g.michalicek@fz-juelich.de

Density of states calculations: The art of producing a nice DOS (3)

- DOS for Si
- Left: Default "hist" mode
 - like center plot above
- Right: Tetrahedron method (use "tria" mode)
 - special k-point set required.
- equal number of k points for both plots

Conclusion

- Invoking Fleur
- Reaching self-consistency
- Band structures
- Density of states

Iteration:	1	Distance:	11.62564945338807
Iteration:	2	Distance:	9.373502217531495
Iteration:	3	Distance:	9.407360414657574
Iteration:	- 4	Distance:	5.187168027915960
Iteration:	5	Distance:	5.322270879983978
Iteration:	6	Distance:	5.560989214328202
Iteration:	7	Distance:	5.951195837307570
Iteration:	8	Distance:	5.962283217634256
Iteration:	9	Distance:	5.734411238477688
Iteration:	10	Distance:	9.364188770141467
Run finished su	ccessful	ly	
Stop message:			
all done			

Slide 12

g.michalicek@fz-juelich.de