please execute the cell below before starting the tutorial by selecting the cell and pressing Ctrl+Enter
%load_ext autoreload
%autoreload 2
from aiida import load_profile
load_profile()
from aiida.orm import Dict, load_node, load_code
from aiida.engine import submit
from IPython.display import IFrame
from pprint import pprint
from aiida_fleur.tools.plot.fleur import plot_fleur
from aiida_fleur.workflows.base_relax import FleurBaseRelaxWorkChain
from aiida_fleur.workflows.eos import FleurEosWorkChain
from aiida_fleur.workflows.mae import FleurMaeWorkChain
from aiida_fleur.workflows.ssdisp import FleurSSDispWorkChain
from aiida_fleur.workflows.create_magnetic_film import FleurCreateMagneticWorkChain
from aiida_fleur.workflows.corehole import FleurCoreholeWorkChain
from aiida_fleur.workflows.initial_cls import FleurInitialCLSWorkChain
# First we will import a prepared dataset for this tutorial with some structures and simulations
# If this was already executed, it will add nothing to the database
!verdi archive import ~/4.AiiDA-FLEUR/files/fleur_tutorial_data.aiida
Higher-level workchains
Disclaimer: This tutorial includes multiple higher level workchains, which will launch multiple fleur jobs, be careful not to run multiple of the higher workchains and not with expensive inputs (large cutoffs etc.) at once to not overload the docker container
Now - finally - we will see the real power of the workchains. We are going to launch a relaxation workchain relaxing a the atoms in a given crystal structure. An equation of state workchain calculating the bulk modulus.
And in the end we are going to use two higher-level workchains for Magnetic Anisotropy Energy (MAE) and Spin Spiral Dispersion (SSDisp) calculations. There are two types of MAE and SSDisp workchains: force-theorem and convergence workchains. In this tutorial we will use force-theorem workchains only that first submits a single SCF workchain to obtain the reference charge density and later submits a single FleurCalculation
task to run the force theorem step.
fleur_code = load_code('fleur@localhost')
inpgen_code = load_code('inpgen@localhost')
options = Dict({'resources' : {"num_machines": 1, "num_mpiprocs_per_machine" : 1},
'queue_name' : '',
'withmpi' : False,
'max_wallclock_seconds' : 600})
options.store()
The Relax workchain
The FleurRelaxWorkChain relaxes the atomic positions of a crystal structure. It is called by the FleurBaseRelaxWorkChain, which handles some errors of the FleurRelaxWorkChain. Therefore, you usually want to run the FleurBaseRelaxWorkChain. For more information see the Documentation on the relaxation workchains
structure = load_node(Struc_PK)
inputs = FleurBaseRelaxWorkChain.get_builder()
#inputs.scf.wf_parameters = wf_para_scf # use defaults
#inputs.scf.calc_parameters = parameters # use fleur defaults
inputs.scf.options = options
inputs.scf.inpgen = inpgen_code
inputs.scf.fleur = fleur_code
inputs.scf.structure = structure
#inputs.final_scf = {
# This namespace can contain all SCF inputs
# If they are given, after the forces are small enough
# a final scf is run with the provided parameters on the relaxed structure
#}
#inputs.wf_parameters = wf_para # use defaults
Relax_workchain = submit(inputs)
print('Submitted Relax workchain pk={}'.format(Relax_workchain.pk))
Check on the workchain, and if it is finished you can continue
relax = load_node(Relax_workchain.pk)
pprint(relax.outputs.output_relax_wc_para.get_dict())
# To view the provenance graph of the workchain
!verdi node graph generate $Relax_workchain.pk
IFrame('./' + str(Relax_workchain.pk) + '.dot.pdf', width=800, height=500)
Equation of states WorkChain
The FleurEosWorkChain calculation an equation of state by scaling the cell and running an SCF workchain on all scalings, while keeping the flapw parameters the same. In the end it performs a Birch–Murnaghan equation of state fit, and returns the results which contains among other quantities the bulk modulus. So far this is only correct for cubic systems, which are relaxed. Also see the documentation on the EOS workchain
The 'right' way to do this would be to run a full constant volume cell and atoms relaxation for each scaled volume.
structure = load_node(Struc_PK)
inputs = FleurEosWorkChain.get_builder()
#inputs.scf.wf_parameters = wf_para_scf # use defaults
#inputs.scf.calc_parameters = parameters # use fleur defaults
inputs.scf.options = options
inputs.scf.inpgen = inpgen_code
inputs.scf.fleur = fleur_code
inputs.structure = structure
#inputs.wf_parameters = wf_para # use defaults
EOS_workchain = submit(inputs)
print('Submitted EOS workchain pk={}'.format(EOS_workchain.pk))
Check on the workchain, and if it is finished you can continue
eos = load_node(EOS_workchain.pk)
pprint(eos.outputs.output_eos_wc_para.get_dict())
a = plot_fleur(EOS_workchain.pk)
If the above does not look well, it means it is not converged, and you should better rerun with more kpoints and maybe specifing FLAPW parameters (calc_parameters) yourself instead of relying on the fleur defaults.
# To view the provenance graph of the workchain
!verdi node graph generate $EOS_workchain.pk
IFrame('./' + str(EOS_workchain.pk) + '.dot.pdf', width=800, height=500)
Magnetic anisotropy workchain
A table of possible inputs looks the same as for SCF:
name | type | description | required |
---|---|---|---|
fleur | Code | Fleur code | yes |
inpgen | Code | Inpgen code | no |
wf_parameters | Dict | Settings of the workchain | no |
structure | StructureData | Structure data node | no |
calc_parameters | Dict | FLAPW parameters, used by inpgen | no |
fleurinp | FleurinpData | FLEUR input files | no |
remote_data | RemoteData | Remote folder to find cdn1 | no |
options | Dict | AiiDA options (computational resources) | no |
Again, there are a lot of optional inputs - however you must follow one of the supported input configurations. They are similar to the SCF workchain and I will not cover all of them here, let us just use the fleur + inpgen + structure mode. Let us also specify workchain parameters and computational resources.
wf_para = Dict({'sqa_ref': [0.7, 0.7], # theta and phi for reference calculation
'use_soc_ref': False, # True if switch on SOC terms for reference
'sqas_theta': [0.0, 1.57079, 1.57079], # a list of theta values to calculate via the FT
'sqas_phi': [0.0, 0.0, 1.57079], # a list of phi values to calculate via the FT
'inpxml_changes': [] # a list of inpxml changes to be done before submission
})
wf_para_scf = Dict({'fleur_runmax': 10, # passed to SCF workchain
'density_converged': 0.02, # passed to SCF workchain
'itmax_per_run': 30, # passed to SCF workchain)
})
calc_parameters = Dict(dict={
'kpt': {
'div1': 4,
'div2' : 4,
'div3' : 1
}})
In this section we want to be even more productive - let us define not a single structure but three of them! Import Fe, Co and Ni film structures that we created in tutorial 4:
fe_structure = load_node(xxx)
co_structure = load_node(xxx)
ni_structure = load_node(xxx)
input_structures = [fe_structure, co_structure, ni_structure]
And calculate magnetic anisotropy energy for all of them:
for structure in input_structures:
MAE_workchain = submit(FleurMaeWorkChain,
fleur=fleur_code,
scf={'fleur': fleur_code,
'inpgen': inpgen_code,
'calc_parameters': calc_parameters,
'structure': structure,
'wf_parameters': wf_para_scf},
wf_parameters=wf_para)
print('Submitted Mae workchain pk={} for {} structure'.format(MAE_workchain.pk, structure.get_formula()))
Again, you can check if it is finished via:
# you need to modify this - replace MAE_PK
!verdi process status MAE_PK
# or
#!verdi process list -a -p 1
Using you experience, can you access the output dictionaries and extract values of MAEs for all the structures?
Now let us proceed to the final task - Spin spiral dispersion workchain.
Scripting tasks
Spin-spiral dispersion workchain
Spin spiral dispersion workchain has the same input nodes as MAE workchain. wf_para
dictionary contains a different set of control keys:
wf_para = Dict(dict={'beta' : {'all' : 1.57079}, # sets beta angle for all atoms
'q_vectors': [[0.0, 0.0, 0.0], # set q-vectors to calculate
[0.125, 0.125, 0.0],
[0.250, 0.250, 0.0],
[0.375, 0.375, 0.0],
[0.500, 0.500, 0.0]],
'ref_qss' : [0.0, 0.0, 0.0], # sets a q-vector of the reference calc
'inpxml_changes': []
})
wf_para_scf = Dict({'fleur_runmax' : 3, # passed to SCF workchain
'itmax_per_run' : 30, # passed to SCF workchain
'density_converged' : 0.002, # passed to SCF workchain
})
To import SSDisp workchain, run:
from aiida_fleur.workflows.ssdisp import FleurSSDispWorkChain
This time we will cover another input configuration: fleur + fleurinp
. We will use FleurinpData
objects generated in section 4.
In the final task, load three FleurinpData
objects and run a FleurSSDispWorkChain
for each of them. Use wf_para and wf_para_scf given above in the same way as in the FleurMAEWorkchain
. Do you need to pass calc_parameters this time?
Explore the outputs, extract spin spiral dispersion. Plot energy of a spin spiral as a function of a q-vector.